

In memory of Daniel Ayre

EDITOR’S LETTER

THE NODE DATA
RUNNER WATCH

THE OPEN BOOK

THE IRIS PROJECT

HARDWARE HACKER
MINI TOOLKIT

SECURE
SCUTTLEBUTT

MAKING MEANING

THE NODE MINI
SERVER V3

FREQUENCY CHART

THE ALOHANET

DISTRIBUTED VPNS

FAREWELL TO
PIRATEBOX

THE AXIOM
CAMERA

P2P QUESTION

THE REFORM 2

004 054030

012 060034

018 078038

022 084044

028 086048

P2P LIVESTREAMING

CLEANING YOUR
ONLINE FOOTPRINT

THE LIBREROUTER

DIGITAL ROT

UPGRADING THE
THINKPAD X200

THE AKASHA
INTERVIEW

THE NFC CARD

BGP: CONNECTING
THE INTERNET

OPEN SOURCE
DIRECTORY

MANIFESTING
REALITY

IPFS 101

MESHNET ATLAS

CABAL CHAT

COMMAND LINE
CHEATSHEET

THE ZERO
TERMINAL

092 148118

096 154124

098 158132

106 166134

112 178140

004 / EDITOR’S LETTER

I find myself experiencing nostalgia for a time
that I was never a part of. It's normal, perhaps,
for a young adult to romanticize a certain
window in history that isn't possible to live
today. Someone out there wishes they could
be mediaeval knight while others might want
to be cowboys or explorers. Others, like me,
have visions more subdued. Either way, your
imagination takes over and you can almost
feel yourself there.

I can hear the electro-mechanical ring of heavy
office phones, and papers rustling near an
oscillating desk fan. I can smell the stale
cigarette smoke that seems to hang in the air,
the pencil eraser shavings, the burnt,
luke-warm coffee resting in the break room.
I can feel the grain of the dark wood paneling
on the wall, the scratchy synthetic polyester of
a burnt-orange-colored chair, and the cool, dull
steel of a work bench.

I'm there, but I'm not. I never really will be.

Research centers, these unassuming
monuments of brick and glass built to convert
raw talent and bottomless capital into
longshots of innovation, have mostly fallen by
the wayside. Sure, there are some still out
there if you look hard enough, but times have
changed. The era of big research centers has
passed us by, ushering in a time of startups
and side hustles.

These are the places I romanticize.

I think my fascination started with Bell Labs, a
research laboratory originally owned by AT&T
that still survives today under the leadership
of Nokia. Bell Labs has its origins in the Volta
Bureau, founded in 1893 in Washington, D.C.
by Alexander Graham Bell himself after
receiving the Volta Prize from the French
government for his invention of the telephone.

The Volta Bureau was constructed as a
research laboratory, focusing on the recording
and transmission of sound. By 1925, Bell Labs
was formed in New York City under split
ownership of AT&T and Western Electric, the
engineering and manufacturing company that
supplied AT&T with hardware.

EDITOR’S LETTER

EDITOR’S LETTER / 005

Bell Labs started as a fairly safe bet for AT&T.
The laboratories would work on researching
new phone machinery and switching
technologies to support the growth and
expansion of the budding telephone network.
As time went on, the number of scientists
employed at the laboratory rose and their
work became more varied. Over the next
several decades, Bell Labs would become
responsible for numerous inventions such as
radio astronomy, the laser, the C and C++
programming languages, the Unix operating
system, the photovoltaic cell, the one-time
pad cipher, and most notably the transistor.

By the 1940s, other Bell Labs locations were
opened outside of New York City, including
offices in New Jersey, Pennsylvania, Illinois,
Indiana, Ohio, Massachusetts, North Carolina,
and Colorado. Over 20 offices opened
exclusively for Bell Labs employees to work at,
with a location in Murray Hill, New Jersey
becoming the new headquarters in 1967
(which still serves as the headquarters today).

While the Murray Hill campus dripped with
not-so-subtle innovation-inspired features
such as an apple tree grown from a cutting of

the very tree that inspired Sir Issac Newton
with his discovery of gravity, the crowning
jewel of Bell Labs was the Holmdel Complex.
Opening in 1962, Holmdel was a corporate
campus before corporate campuses. The
473-acre site could hold over 6,000
researchers and engineers within its two
million square feet of working space. Designed
by architect Eero Saarinen, the complex
embodied a 1950s utopian outlook with
mirrored curtain-wall glass and an elliptical
shape. A large, 70-foot-high atrium connected
four separate pavilions with sky-bridges.
Small, symbolic touches promoted a sense of
company pride, such as a water tower
designed to look like a transistor and a
sculpture of Karl Guthe Jansky's radio
astronomy antenna positioned at the location
the original antenna had sat in 1932 (when an
older building occupied the site).

Holmdel was modern and comfortable. It
encouraged collaboration and attracted
genius. Seven of Bell Labs' nine Nobel Prize
winning scientists and researchers worked at
Holmdel over the site's lifetime, including Arno
Penzias and Robert Wilson who are credited
with proving the Big Bang Theory, and Steven

000 / EDITOR’S LETTER

I find myself experiencing nostalgia for a time

that I was never a part of. It's normal, perhaps,

for a young adult to romanticize a certain

window in history that isn't possible to live

today. Someone out there wishes they could

be mediaeval knight while others might want

to be cowboys or explorers. Others, like me,

have visions more subdued. Either way, your

imagination takes over and you can almost

feel yourself there. You're living in a borrowed

moment.

I can hear the electro-mechanical ring of heavy

office phones, and papers rustling near an

oscillating desk fan. I can smell the stale

cigarette smoke that seems to hang in the air,

the pencil eraser shavings, the burnt,

luke-warm coffee resting in the break room.

I can feel the grain of the dark wood paneling

on the wall, the scratchy synthetic polyester of

a burnt-orange-colored chair, and the cool, dull

steel of a work bench.

I'm there, but I'm not. I never really will be.

Research centers, these unassuming

monuments of brick and glass built to convert

raw talent and bottomless capital into

longshots of innovation, have mostly fallen by

the wayside. Sure, there are some still out

there if you look hard enough, but times have

changed. The era of big research centers has

passed us by, ushering in a time of startups

and side hustles.

These are the places I romanticize.

I think my fascination started with Bell Labs, a

research laboratory originally owned by AT&T

that still survives today under the leadership

of Nokia. Bell Labs has its origins in the Volta

Bureau, founded in 1893 in Washington, D.C.

by Alexander Graham Bell himself after

receiving the Volta Prize from the French

government for his invention of the telephone.

The Volta Bureau was constructed as a

research laboratory, focusing on the recording

and transmission of sound. By 1925, Bell Labs

was formed in New York City under split

ownership of AT&T and Western Electric, the

engineering and manufacturing company that

supplied AT&T with hardware.

EDITOR’S LETTER

000 / EDITOR’S LETTER

The Holmdel Complex

008 / EDITOR’S LETTER

the ARPANET, several of initial PARC

employees like Bill English and Bill Paxton

came directly from SRI International's

"oN-Line System" development team,

featured in Bill English's famous "The Mother

of All Demos" in 1969. Concepts from that

project such as the computer mouse,

two-dimensional display editing, and

hypermedia not only went on to influence

work at PARC, but change the course of

computing as a whole. While other early

employees would come directly from fields in

academia, PARC was able to take advantage

of its physical location on land leased from

Stanford University to have a constant influx

of new Stanford graduates looking for jobs.

The PARC team was a hodgepodge of

tinkerers, teachers, and techies, each bringing

different points of view and new ideas. It

didn't matter what you did in your previous

occupation, you were part of the PARC family.

Throughout the 1970s and 1980s, PARC

developed dozens of technologies that would

become the building blocks for computing as

we now know it. PARC is responsible for laser

printing, object-oriented programming,

computer-generated bitmap graphics,

Chu who used laser light to trap atoms. By

2006 Alcatel-Lucent, then-parent of Bell Labs,

sold the facility to real estate developers as it

reduced its laboratory footprint. Currently, Bell

Labs operates under Nokia after their

purchase of Alcatel-Lucent in 2016, and

boasts a total of 17 laboratories worldwide

including locations in Munich, Budapest,

Dublin, Cambridge, Shanghai, and Tel Aviv.

Bell Labs isn't the only research laboratory

that caught my interest. Xerox PARC (the Palo

Alto Research Center), a subsidiary of the

photocopy-pioneering Xerox Corporation,

formed in 1970 to focus on the burgeoning

field of computer technology. PARC's brutalist

building sat in the heart of Silicon Valley, some

3,000 miles away from Xerox headquarters in

Rochester, New York. The distance ultimately

proved to be a double-edged sword: there

wasn't much oversight from Xerox, so PARC

could operate with some autonomy, but Xerox

had trouble putting faith in work they couldn't

see or directly interact with.

PARC really thrived from an early infusion of

computing talent. Lead by Bob Taylor, well

known for his work on building and growing

EDITOR’S LETTER / 009

Ethernet networking, WYSIWYG editing,

very-large-scale integration (for integrated

circuit design), the GUI, and (arguably) the first

personal computer. While PARC was churning

out wonder after wonder, much of it wasn't

understood by parent Xerox. By December

1979, Steve Jobs and several engineers at the

fledgling Apple Computer company visited

PARC for three days to view demonstrations of

and ask questions about the Xerox Alto,

PARC's personal computer complete with a

graphical user interface, computer mouse, and

networking capabilities.

Xerox would infamously "fumble the future"

(to borrow from the title of Douglas Smith &

Robert Alexander's 1999 book about the

company) as Apple would go on to use

concepts they saw at PARC to influence work

on the Macintosh project. The rest, as they say,

is history. Throughout the '90s, PARC's image

faded as they fell behind on the curve of

groundbreaking innovation. By 2002 however,

PARC was spun off into an independent wholly

owned subsidiary company that still provides

research and development services to

companies such as GoogleX, BASF & Samsung.

I would be remiss if I didn't also mention

Lockheed Martin's Skunk Works, a pseudonym

for the aerospace company's Advanced

Development Programs group. Founded in

1943, the Skunk Works name comes from the

then-popular comic strip Li'l Abner where it is

used as the name of a mysterious moonshine

factory. Skunk Works' first official project was

a jet fighter built at the request of the US

Army Air Force. In what would become

common practice for Skunk Works, work was

started immediately without a formal contract

and completed secretly with a small group of

people in a limited timeframe. This first

project, ultimately named XP-80, set a

precedent for the Skunk Works group, allowing

them to take on critical projects over the next

few decades such as the U-2 and A-12

reconnaissance planes. Skunk Works became

a de facto example of a diverse yet small team

working to produce the best product.

Engineers were judged by their raw skill,

showcasing hires like Mary G. Ross, the first

known Native American female engineer, who

was among the initial 40 Skunk Works

employees. Since the 1950's, Skunk Works

has focused primarily on the construction of

stealth aircraft, which they continue to build

EDITOR’S LETTER / 011

today. The genericized term "skunk works"

(and also the shortened "skunkworks") is

commonly used today by organizations to

designate a small internal team working on an

innovative project.

When we released Vol 01 of the NODE zine,

we didn't anticipate the warm reception we

ended up receiving. We took a chance on

something, something new and exciting, that

we wanted to share with the world. We didn't

know how people would react to the zine.

Would it be loved or hated? Would people

understand it? Would it be too technical or

not technical enough?

Over the past year I've had the pleasure of

hearing from many of you, even meeting a few

in-person, and was often surprised by the

audience the zine reached. It went beyond the

amateur tinkerers to artists, doctors, and

engineers. The material found the curious

people: those rare souls out there who need to

figure things out and aren't satisfied by what

they see at face-value.

In a way, the NODE community is a lot like a

research laboratory of its own. All of us, even

though we may have never met, share in the

NODE philosophy. We work on our own projects

and collaborate with others. We take chances

on things, and aren't afraid to get it wrong the

first time. We persevere and carry on.

The subtitle for NODE Vol 02 is "Manifesting

Reality" and through it we want to show that

everyone has the power to build the world they

want to see. Just as those engineers and

researchers built the future by trying out new

ideas and never giving up, we can leave our

mark on this world and change it for the better.

You've already taken the first step.

We're ready, are you?

012 / THE NODE DATA RUNNER

The NODE Data Runner is another modded
Casio F91W project, this time going the extra
mile to create something that not only looks
nice, but is extremely functional. I guarantee
there are no other watches like this out there.

Like the previous mods that you may have
seen me do, this is based on the Casio F91W,
and that's down to the fact that it's THE
standard for an inexpensive digital watch,
striking a good balance between availability,
price, features and build quality. The low price
has allowed me to break many of these beasts
whilst on my journey of experimentation.

(Be aware if you intend to make your own, the
cheap Casio fakes are much lower quality, plus
the internal parts are shaped slightly
differently depending on the manufacturer.)

The Data Runner name is a nod to the
Cyberpunk genre of fiction which I'm fond of,

THE NODE DATA
RUNNER WATCH

specifically Johnny Mnemonic in this case
because of the storage features I've added.

MODIFICATIONS

The first thing you'll notice is that the standard
frontplate has been replaced by a minimalist
black one. This is 1mm acrylic with black UV
printing on the back side. I've only tried solid
black, but I'm guessing you could put all sorts
of designs on it using this technique.

Behind that is a custom PCB which acts as an
antenna for an NFC chip. This method gives
you much better scanning range, and the two
contacts on the back of the antenna allow you
to add any kind of NFC chip you can solder and
fit inside the watch.

I chose an 8KB chip and connected it using
some super thin enamel coated wires, but
there are many options including tap-to-pay
chips, door access, etc.

The 8KB chips are one of the largest capacity
you can buy right now and these are perfect
for in-person sharing of public encryption

24H

THE NODE DATA RUNNER / 017

keys, your resume, or other pieces of data.

Another potential upgrade would be to use a
flexible PCB, which would be much thinner. In
theory that’d allow you to use the original
frontplate without having to remove it, for
maximum stealth.

I also experimented with wiring up the top left
LED light button as a way to only initiate the
chip once pressed, adding an extra layer of
security by stopping passive activation.

You can utilize the button motion from the
Casio's custom switches, but it's very fiddly to
get working. I believe you could fit a small side
actuated button inside the case too, but I need
to figure out a better way to implement it.

The internal green LED has now been replaced
with a white one, which is purely for aesthetic
reasons, because why not?

Moving to the back of the watch, you'll notice
that it's slightly thicker than a regular F91W,
and that's because I've added a spring-loaded
micro SD card socket to the inside of the
original Casio metal backplate.

It's held in place using a simple 3D-printed
frame, and allows you to physically carry your
important files on your person at all times.
With micro SD card capacities reaching over
500GB now, that's a lot of potential data.

I designed a version with a micro USB card
reader built in too, just to see how it would
turn out, but the final watch was far too thick
and looked a bit derpy.

All these mods give you a pretty useful little
watch, with functionality and looks that you
won't see anywhere else. Yes, you could use a
"smart" watch, but it will spy on you and has a
shit battery life in comparison.

This baby tells the time, sets alarms, stores
data, can potentially pay for stuff, and has a
battery that can last months. What more could
you want?

018 / THE OPEN BOOK

The Open Book is a universal reading device,
based on the Feather-compatible SAMD51
microcontroller board. Created by Joey Castillo
in early 2019, this neat little thing is shaping
up to be an open source replacement to the
Kindles of the world. Unlike others, this
e-reader isn't locked into the ebook DRM and
surveillance ecosystem.

Joey explains some of the downsides of other
closed systems, "There was that incident
where Amazon deleted copies of 1984 from
people’s Kindles. And the well-known way that
the Kindle surveils your reading habits. Then in
June there was this tweet that kind of blew up
in my feed. It was about the Microsoft eBook
store closing, and one sentence just seemed
mind blowing: 'The books will stop working'."

With no formal training in electronic
engineering, and a long and winding resumé
ranging from journalism graduate to cocktail
guide, filmmaker, iOS developer, and now open
hardware designer, Castillo shows why

THE OPEN BOOK technology is so powerful. Using already
available information, he is creating brilliant,
useful, and important things for potentially
millions of people.

Besides the need for an open e-reader
alternative, another open source project was
one of the main reasons why the project was
started. Joey recalls, "Weirdly it all started with
Unicode. I’ve always been fascinated by this
effort to catalog and represent all the writing
systems of the world, and I was doubly
fascinated with GNU Unifont, an open source
bitmap font that contains representations of
very nearly every character in Unicode. Over
20 years, dedicated volunteers have been
placing pixels so that we could have one
universal font for human language. It made
me want to build some kind of 'universal
language' device."

He continues, "I started to think more deeply
about why this thing mattered. An open
source, build-it-yourself device for reading
texts in all the languages of the world seems
like something that ought to exist. Something
you can understand from voltage levels to bits
to bytes to words to feeling moved.

THE OPEN BOOK / 021

And, to bring it full circle, I’m hoping to make
plain old UTF-8 text the main format that the
Arduino library supports. It’s comprehensible,
it supports all the world’s writing systems, and
(hopefully) it won’t stop working for quite
some time."

The current iteration of the Open Book
features a 4.2" e-paper display, with partial
refresh, physical selection and page turn
buttons, microSD slot for ebook data, potential
for universal language support, headphone
support for audiobooks, and microphone
support for voice control. While the device
doesn't have a backlight, a frontlight LED
option is pretty easy to add to the design.

The bill of materials for V2 comes to around
$60 which is pretty reasonable for something
with the potential this has.

In terms of the current state of the project,
Joey explains, "The hardware design is almost
complete; all the core functions of the board
work, and I’m in the process of working on an
Arduino library to support the device. I might
make one last revision of the board (removing
a component to cut the BOM cost, and freeing

up a couple of pins for some extra
functionality), but as of now the design works."

The next steps involve making the design ready
for manufacturing, and designing the casing.
Then, there's a bit of work needed to polish up
the software side of things. Joey envisions
developing a new e-reader firmware standard,
"I love the idea of building an open source
e-reader firmware that can make the most of
this kind of bare metal microcontroller; the
Kindles and the Kobos of the world have a lot of
RAM and spare cycles to play with, but if we
sharpened our focus, did away with having to
connect to an online storefront, didn’t bother
with the megabytes of code dedicated to
surveilling readers as they turn the pages, we
could build something lean and capable that
could accomplish that baseline use case of
reading books on a screen."

If you'd like to collaborate with Joey on the
Open Book, and help make this a reality, check
out the links below:

hackaday.io/project/168761

github.com/joeycastillo/The-Open-Book

022 / IRIS

Martti Malmi is a name that some early
Bitcoiners may be familiar with. Being one of
the very first devs working on the protocol, he
got a chance to work directly with Satoshi
Nakamoto, paving the way for modern
peer-to-peer technologies.

A long-time proponent of decentralization,
he's now concentrating his energies on Iris, a
JavaScript based communications platform.

Here's my interview with Martti, where he
explains the Iris project, web-of-trust systems,
and the considerable goals he has for it.

Check it out. ĺ

THE IRIS PROJECT:
IN CONVERSATION
WITH MARTTI MALMI

What motivated you to start this project?

I wanted a web of trust based alternative to all
kinds of centralized databases: social media,
online platforms, name services, government
registries and identity providers. No single
source of truth that has too much power.
Instead, you could have a *web* of trusted
parties—a social graph—that you can use to
filter and curate what you see.

I was also interested in the natural system of
trust that worked so well in tribes and village
societies, but not anymore when most of the
people you come across are strangers. Digital
technology could be used to scale up Dunbar's
number—"social scalability" as Nick Szabo
puts it.

A global web of trust could be a cost-effective
and less harmful alternative to central
lawmakers and courts. It would be especially
useful for international low-value transactions
and disputes, where traditional channels are
not useful.

What kind of tradeoffs did you have to make
going the pure browser-based route?

IRIS / 023

Browser applications have dramatically lower
barrier to entry than apps that you need to
install separately. On the other hand, their p2p
capabilities are limited. You can do direct
WebRTC between browsers, but you still need
a rendezvous server.

However, browser applications are easily
ported into Electron desktop apps which can
do more. Iris Electron app can already
communicate with local network peers over
multicast. I'll need to make it optionally join a
swarm of peers that browsers can connect to.

I'm also working on a React Native mobile app.
I want it to support Bluetooth mesh
networking at some point. Most importantly, it
will feature push notifications from messages.

The advantage of going browser-first is that all
these products can use the same JavaScript
codebase and easily talk to each other.

Am I right in thinking that IP addresses of the
users are public at the moment? Are there
any plans to add onion-routing, or some
other way of increasing user privacy?

Currently it only connects to an initial list of
peers and asks your friends for more public
peers. Your IP address is only visible to the
peers you connect to. I'm envisioning private
peer exchange, so users can form "darknets"
that are more difficult to censor than publicly
listed peers.

You can already use the browser application
over Tor without a problem. Tor support for
the desktop application has been requested,
and could be done using a SOCKS proxy.

I get the point—I'm not entirely comfortable
sharing my IP either. It's good to have the Tor
option available. But darknets might be more
difficult to censor than Tor entry relays, and
sometimes you don't have access to the
global Internet..

Can you explain the Web of Trust system you
adopted and some of its advantages?

A web of trust (WoT) consists of users who
trust (or more familiarly, friend) each other.
Users can also distrust/block/downvote bad
actors. This social graph can be used to filter
out spam, fake accounts, trolls and other

IRIS / 025

unwanted content without giving the power to

central moderators. You can use it to prioritize

the storage of data by its author—very useful

in a p2p network.

Users can also attest each others' names and

other contact details. This way you build a

"global address book": a name service that

maps non-unique natural names to contacts in

your WoT. You have a dropdown search that

shows the person's name, avatar, WoT

distance and whatever attributes you want.

This is intuitive and avoids the name squatting

problem of unique-name systems such as

DNS. And it's non-hierarchical: you don't need

to pay any registrar.

Have you thought about integrating Iris on

mesh networks? I can imagine Iris Messenger

being really useful on city-wide meshes.

Absolutely. Iris is built on Gun, a data

synchronization protocol / distributed

database. There are Gun adapters to sync over

many kinds of transports and storages:

filesystem, localStorage, websockets, webRTC,

multicast and others—even the unholy AWS

S3. Would be great to add Bluetooth and other

mesh transports (that don't already provide

TCP/IP) to the list.

Nice. How many people have used Iris so far?

What kind of feedback have you received?

I've worked on the concepts behind Iris for

years, but the most popular, functional and fun

application has been Iris Messenger. It's an

instant messenger which I hacked together in

January 2020 using just iris-lib, jQuery and

some helpers. I've had chats with many

friends and strangers over it.

Feedback has been overwhelmingly positive,

but there have been probably less than a few

hundred people testing it.

I'll need to add group chats and mobile

notifications to make it more engaging. Then I

imagine decentralization projects could be the

early adopters.

Is there any specific assistance you're

looking for on the project?

There are lots of easy and fun improvements

you could do to the browser app. Here's your

IRIS / 027

chance to build the instant messenger you've

always wanted. If you want more challenge, on

the library level we need group chats,

improvements to peer finding, privacy and

other core features. Or you can just integrate

the library to your own project, see how it

goes, and submit any necessary pull requests

or issues.

Where do you want to take the project? The
name service and identity verification side of
things on their own seems like they could be
very useful (like a P2P Keybase).

I'll probably continue with the messenger as

the main product and add simple identity

management features. Basically a shared

contact list where you can look up people and

verify each others' contact details, public keys

and all other kinds of attributes. Signing in to

websites by scanning a QR code in the app

would be a cool and useful feature.

I'll maintain the name service and other core

functionality in iris-lib which is easy to

integrate with other applications. Would be

cool to see integrations with crypto wallets

(looking up users' payment addresses) and

other apps. I recently created a "live chat"

widget that you can embed to your website

from iris-lib. Embeddable "comment box

without trolls" could be popular with bloggers.

You could even use it on a static webpage

served over DAT or IPFS.

It seems like Iris is shaping up to be much
larger in scope than I originally understood.
There's so many potential use cases, it must
be a little overwhelming.

Where can people find out more and
contribute to the project?

Thank you! It has indeed been a bit

overwhelming, and it's taken some effort to

focus. I hope group chats and mobile

notifications will get things going.

The project's Github repository

(github.com/irislib/iris) is the best

place to find out more and contribute.

Excellent. Best of luck with the project.

As someone who tinkers with custom
hardware, I've grown to use a small selection
of core tools almost daily. Over time this has
morphed into a mini toolkit that can complete
various tasks, from soldering, desoldering, and
assembling prototypes, to disassembling and
repairing electronics. It's inexpensive to put
together, and fits inside a small pencil case.

For specialized tasks there are more complex
tools and machines available, but this little kit
can handle almost all small tasks. It's been
indispensable for my work.

USB Soldering Iron. These cheap USB
soldering irons are surprisingly good, and are
more than capable for light work.

Solder/Desolder Wick. Custom 3D-printed
solder and solder wick dispensers allow you to
complete small soldering tasks.

Mini Screwdrivers. Medium sized precision
screwdrivers in both phillips and flathead are
more than suitable for most small tasks.

Sharpie. Standard must-have item.

HARDWARE HACKER
MINI TOOLKIT

Angled Tweezers. Crucial if you want to do a
bit of SMD component soldering.

Telescopic Magnet. Handy for collecting stuff
that fall into small nooks.

Metal Rule. Not only for measuring, but useful
for smoothing and leveling materials.

Sugru. Useful for quick prototypes / repairs.

Heat Shrink. Used for splicing and repairing
wires and cables. Throw in different sizes.

Leatherman Squirt ES4. Tiny multitool that
can cut/strip wires, has files, knife, and pliers.
Killer addition to any toolkit.

Lighter. Useful for applying heat shrink, and
also sometimes helpful for molding plastics.

Spudger & Pick. Great for getting into
electronic casings, prying glued seams,
removing goop, etc.

Mini Hacksaw Blade. Literally hack electronics
apart. I've added a 3D-printed handle to mine.

030 / DISTRIBUTED VPNS

DISTRIBUTED VPNS -
AN OVERVIEW

The privacy-minded browser company Brave
UHFHQWO\�DQQRXQFHG�D�QHZ�SURGXFW�FDOOHG�931Ŭ��
a distributed virtual private network (dVPN). As
WKH�QDPH�LPSOLHV��G931V�EHKDYH�VLPLODUO\�WR�
traditional VPNs but they don't have a central
authority. Users can use the network in both a
client and server capacity by accessing
QHWZRUN�LQIUDVWUXFWXUH�WR�IRUZDUG�WKHLU�WUDIILF��
or acting as an exit node to allow data in and
out of the network.

While the distributed VPN concept lends itself
well to getting around censorship and
JHR�EORFNLQJ�UHVWULFWLRQV��G931V�FDQ�KDYH�
GLIIHUHQW�PHWKRGV�RI�HQVXULQJ�SULYDF\��
UHOLDELOLW\��VWDELOLW\��DQG�RU�DQRQ\PLW\��G931V�
FDQ�RIIHU�QHZ�FRQFHUQV�WR�XVHUV��VXFK�DV�D�
case where a bad actor on the network
performs malicious or otherwise illegal activity
through another network user's gateway. With
D�WUDGLWLRQDO�931��EODPH�IDOOV�RQ�WKH�931�
FRPSDQ\�LWVHOI��EXW�WKLV�OD\HU�RI�SURWHFWLRQ�

doesn't exist when individuals are acting as an
edge on the network. Some projects address
WKHVH�LVVXHV��ZKLOH�RWKHUV�PDNH�QR�DWWHPSW�

Distributed VPNs are not a brand new
FRQFHSW��DQG�PDQ\�RI�WKHP�DUH�DFWLYH�DW�
YDULRXV�OHYHOV�RI�PDWXULW\��%HORZ��LQ�QR�
SDUWLFXODU�RUGHU��,
YH�DVVHPEOHG�D�OLVW�RI�DFWLYH�
dVPN projects that are currently operating or
in the development stage.

931Ŭ

This forthcoming dVPN from Brave allows exit
nodes to whitelist services that they wish to
DFFHSW�WUDIILF�IURP��7R�DYRLG�HDYHVGURSSLQJ��
VPN0 relies on zero-knowledge proofs to
choose exits by referencing the type of traffic
being sent against lists of potential nodes that
permit it. The exit doesn't know the specific
W\SH�RI�WUDIILF�LW�LV�FDUU\LQJ��ZKLOH�WKH�FOLHQW�
doesn't know the full list of services the exit
DOORZV��931Ŭ�KDV�D�SULPDU\�JRDO�WR�SUHVHUYH�
SULYDF\��EXW�DOVR�SODFHV�LPSRUWDQFH�RQ�
network performance and speed.

https://brave.com

DISTRIBUTED VPNS / 031

ORCHID

Orchid is a dVPN that allows users to buy
bandwidth from a global pool of users
operating as service providers. Using their own
931�SURWRFRO�EXLOW�RQ�WRS�RI�:HE57&��2UFKLG�
allows for clients to buy bandwidth while node
RSHUDWRUV�FDQ�VHOO�LW��2;7��2UFKLG
V�RZQ�GLJLWDO�
FXUUHQF\��LV�XVHG�WR�IDFLOLWDWH�WUDQVDFWLRQV�
while the Ethereum blockchain is leveraged for
providers to advertise their service.

https://www.orchid.com

LOKINET

The Lokinet is a decentralized VPN that utilizes
onion routing to provided encrypted routing
within and outside of the network. Network
RSHUDWRUV�DXWRPDWLFDOO\�HDUQ��/RNL��D�
FU\SWRFXUUHQF\�EDVHG�RII�RI�0RQHUR��E\�
operating service nodes on the network. While
service nodes can simply provide internal
UHVRXUFHV��WKH\�UHFHLYH�PRUH�FRPSHQVDWLRQ�IRU�
allowing exit traffic to pass through them.

https://loki.network

MYSTERIUM

Mysterium is an open-source dVPN built on
Ethereum that can integrate with OpenVPN
and WireGuard. While the network is currently
IUHH�WR�XVH��XVHUV�FDQ�FKRRVH�WR�UXQ�QRGHV�
operating as traffic relays and receive ETH
automatically from Mysterium based on node
SHUIRUPDQFH��7R�SURWHFW�RSHUDWRUV��D�ZKLWHOLVW�
is in place to restrict traffic that goes out of
the network and block malicious activity.

https://mysterium.network

SENTINEL

Sentinel is a decentralized VPN backed by
blockchain technology to incentivize users on
the network to run router nodes. Using a
�3URRI�RI�7UDIILF��FRQVHQVXV�V\VWHP��SRWHQWLDO�
bandwidth is advertised and tracked for
LQFHQWLYH�SD\RXW��&XUUHQWO\��WKH�6HQWLQHO�G931�
is in a proof-of-concept phase and aims to be
a solution for safely routing user's traffic.

https://sentinel.co

032 / DISTRIBUTED VPNS

HOLA

Perhaps the longest-operating dVPN (formed
in 2007), Hola creates a network where each
user is both a client and an exit.

Hola additionally implements peer-to-peer
caching, where popular content may be cached
within the network to reduce the need to
perform multiple external retrievals and
increase network speed.

More recently, users have to option to enroll in
a paid tier of service wherein they can use the
network without acting as an exit.

https://hola.org

PRIVATIX

Built on Ethereum, Privatix is a dVPN that
allows purchase/sale of bandwidth between
consumers (clients) and operators (agents).

Using smart contracts, zero-trust payments
can be made to node operators with the PRIX
currency, all without revealing the IP

addresses of either party. Clients and agents
are connected to one another using
onion-routing, which prevents actors on the
network from learning who is on either side of
any given connection.

https://privatix.io

LETHEAN

Lethean is a dVPN where clients seek out exit
nodes they want to use and purchase
bandwidth from them with the Lethean
cryptocurrency, based on CryptoNote.

Using a marketplace, exit node operators can
advertise their country, speed, limitations, etc.
so clients can choose an exit that will best
work for them.

While both clients and nodes can access the
VPN via Lethean wallet applications, clients
can also utilize the VPN through browser
plugins for Firefox, Chrome, Opera, and Brave.

https://lethean.io

DISTRIBUTED VPNS / 033

NYM

Nym is a dVPN utilizing mixnet technology to
provide anonymity and security over the
network. After a packet is encrypted, the
Sphinx packet format is used to pad all packets
to the same size and make them
indistinguishable from one another.

Nodes within the network will delay the
transmission of these packets and introduce
dummy packets that create a constant stream
of traffic to disrupt observers. Node operators
are rewarded automatically in a proof-of-stake
system for how much traffic they mix as part
of the network.

https://nymtech.net

VPN GATE

VPN Gate is an academic project that creates a
dVPN to combat censorship and surveillance
imposed by governments.

Currently, VPN Gate has over 5000 volunteer
run nodes, and users can connect to the

network through a variety of protocols
including OpenVPN and L2TP/IPsec.

Exit node operators must operate on
residential connections with dynamic IP
addresses, as governments are known to
block ranges of IP addresses owned by
datacenters and hosting companies.

Further, VPN Gate is offered free of charge,
and does not require sign-up.

https://vpngate.net

034 / FAREWELL PIRATEBOX

One of the earliest NODE projects was creating

a 'Pocket Piratebox', basically modifying the

standard TP-Link MR3020 Piratebox install by

removing its case and wiring it up to a battery

so it fits in your pocket. This was super simple,

and a good beginner hardware hacking project.

The original Piratebox project always held a

special place in my heart—the idea of creating

mini WiFi access points in order to share files

or set up adhoc, in-person chatrooms seemed

really cool, and I was saddened to find out that

not only has development stopped, but that

the Piratebox.cc site will be going offline

sometime in 2020.

According to lead dev Matthias Strubel, this

shutdown is caused by a range of factors,

mostly revolving around lack of time and lack

FAREWALL TO
PIRATEBOX AND A
PROPOSAL FOR
THE FUTURE

of external help. Regardless of the reasoning, I

have big respect for Matthias as he's been

diligently working at this for many years, and I

look forward to seeing what he does next.

A PROPOSAL: COMMUNITYBOX

Something I've been pondering for a few years

is creating a Piratebox spinoff with a slightly

different take, and since Piratebox is now

going away, I thought maybe it's time for

something new to step in. I'm tentatively

calling it CommunityBox.

The idea is to create offline social networks

aimed at local in-person communities,

allowing users to chat, share news, and

organize without needing ISPs or services like

Facebook and Google.

You could get a few people in an area to run

CommunityBoxes, making sure their WiFi

signals overlap. Each box would automatically

connect to others in a peer-to-peer mesh

configuration, so say when a new calendar

item is uploaded to one, it's shared with the

rest of the nodes. This allows them to not only

cover smaller areas like apartment buildings,

hackerspaces streets, and neighbourhood

watch groups, etc. but also to expand to larger

areas such as conferences, multiple city

blocks, and fluid moving locations like protests.

Users within WiFi range could connect to the

open access points using their phones and

computers in order to keep up with what's

going on and to contribute.

Think of it like a digital community noticeboard

where you have to be physically in the

community in order to access it.

HUMAN ORIENTED

One of the interesting side effects of our

hyperconnected world is the increased

atomization and loneliness many of us feel.

The famous "Dunbar's Number" posits that

the size of human brains has a cognitive limit

with regards to the number of stable social

relationships one can have—that number

being 150—and anything above that adds

extra complexity and problems.

Throughout all other times in human history,

we've had to rely on our immediate

communities around us in order to survive, yet

in this digital age, we have gone so far in the

other direction that many of us don't even

know our neighbours anymore. Paradoxically,

lots of people have hundreds or thousands of

'friends' on social media.

What if something like a CommunityBox could

help re-establish some of that in-person

community spirit, even in a small way?

HARDWARE IDEAS

In order to develop a project like this, we'd

need to concentrate on using hardware that

strikes a good balance between availability,

price, and features.

As you have probably guessed, I think

Raspberry Pis are the front-runner for this

kind of thing since they work well as a low

power wireless server.

Continued ĺ

FAREWELL PIRATEBOX / 035

At its most basic installation, a non-technical
user should be able to write the micro SD card,
insert it, plug everything in, and boot up.

You can also attach long-range WiFi antennas,
and WiFi interfaces to increase the coverage.
Aside from that, Raspberry Pis can easily
interface with LoRa modules for longer range
communications, so that might be an area to
explore further?

The low power consumption of a Raspberry Pi
means it's possible to have backup battery
setups, as well as full off-the-grid solar/wind
boxes. This would be particularly handy in
emergency scenarios, or just when power or
the Internet goes down, allowing communities
to continue communicating.

GET INVOLVED

So what do you think? Does this sound like a
project you'd want to contribute to? I'm not
sure what specific peer-to-peer architecture
we'd use for this, but we can figure it out. If
that’s your area of expertise, get in touch.

Likewise, if you're a good web designer, we'll
need help designing the user interfaces. It'd be
sweet if we could also design custom
hardware add-ons for battery/solar options
and rugged enclosures. So, if that's in your
wheelhouse, I'd like to hear from you.

I have registered the communitybox.org
domain for when things start moving, but in
the meantime, if you are interested in helping
or testing, email me at mail@n-o-d-e.net
and we can try and put a small team together.

Hopefully we can create something useful for
communities around the world, and keep the
sentiment alive that the Piratebox project
fostered for all those years.

FAREWELL PIRATEBOX / 037

038 / AXIOM

Since 2012, filmmaking and camera

technology enthusiast Sebastian Pichelhofer

has been working on the AXIOM open

hardware digital camera under the Apertus

non-profit organization. Given the short

timeframe and resources available, what has

been developed so far is remarkable.

When most people think of digital cameras,

they often think of their smartphone or a

DSLR, but Sebastian wanted to create a

high-end camera for cinema. This isn't

influenced only by his love of film, but due to

economic reasons as well.

"The AXIOM Beta can be used for capturing

still images but considering the price-tag of

our image sensor alone being way beyond

1000€ per piece, it's difficult for a small team

like us to create anything that competes in

terms of quality and price with what DSLRs

from Canon, Sony, Nikon, Panasonic, etc. are

THE AXIOM OPEN
HARDWARE CAMERA

producing already. When it comes to moving

images the situation is completely different

though," Sebastian explains.

This decision to go with video over still images

makes sense, and has definitely drawn in

other like-minded people who agree, with the

project expanding from a few contributors to a

large, worldwide team building the AXIOM.

The sensor in the Beta unit is capable of

capturing moving images at up to 300 FPS in

full 4K resolution, but that's just scratching

the surface of the appeal of this camera. Since

the project is both open hardware and

software, the level of configurability and

modularity is huge. It basically gives you a top

quality base platform that you can tweak and

customize for your specific needs.

The internals of the AXIOM consist of a bunch

of different PCBs, designed for plugging and

swapping parts. This means you can choose

the type of video output ports, USB 3.0

output, SSD adapters, ethernet ports, and

more. You can also plug in regular USB devices

such as thumb drives and wifi adapters, and

they will work natively on its Linux-based OS.

of output here is phenomenal and in my mind
the project is a testament to the power of
collaboration and open hardware/software.

At the time of writing, the AXIOM Beta is still
in the testing phase, with about 50 units being
tested worldwide. The team is aiming for
production and assembly Q1 of 2020, with
shipping in the second half of the year.

If you want to learn more, and maybe get
involved, check out Apertus' site:
https://apertus.org

The software side of things is completely open
too, giving users many ways to interface with
the device. Protocols such as FTP, and SCP are
all available, as well as an in-development
HTTP GUI, allowing access to the camera from
phones, tablets, or computers.

Apertus' communications lead RexOr sums it
up nicely, "Everything has been done on
virtually no money and those who're
experienced with electronics endeavours of
this scale view what's been achieved thus far
as a minor miracle.” I definitely agree, the level

If you're
a reader of this zine, you should

have a grasp of why peer to peer
software has such great potential. The

ability for us to
regain control

of our digital
lives with
n e t w o r k s

a n d
p l a t f o r m s

that the users
themselves own

and operate is a
big deal, so the

question is, why
aren't P2P

systems more
widely used?
I asked

some

leaders in P2P
tech their
thoughts, and
this is what

they said.

“They need to have better UX and better

features than the centralised

alternatives. It's way too easy to drown

in the details and complexities of

decentralisation at the expense of UX.

Riot has suffered from this a lot, but we

are now determined to fix it at any cost.

On the plus side, a well-designed open

decentralised ecosystem (e.g. the web)

should always be able to beat a silo on

features via the size and vibrancy of its

community.”

“For decentralization technologies to

achieve broad adoption, it’s critical that

they deliver an experience that is as

good as—or better than—the solutions

they aim to replace. Traditional users

generally won’t care about

decentralization if it comes at the

expense of performance, cost, reliability,

user experience, or the myriad of other

considerations in the buying process.

Decentralized solutions need to surprise

and delight the user. When they can

achieve lower cost, higher performance,

and better reliability, then you will see

P2P technologies take off.”

Matthew Hodgson

Matrix Co-Founder
Shawn Wilkinson

Storj Founder

“I was told I have 500 characters to
explain what needs to happen to P2P

apps, but I only need one [word]: usability.

The ceiling on the number of people who
will use apps for ethical, technical, or

privacy reasons is a [small] percentage of
the population (I say this as a member).

The ceiling on the number of people who
will use apps because they deliver a

better experience is only limited by the
rate of human reproduction.”

“Better user experience. Barriers to entry
continue to fall as devices get cheaper
and better, but there’s still a knowledge
barrier keeping out non-technical users.

Benefits beyond ideology. Current P2P
users are mostly “true believers.” The
more that people are able to experience
tangible benefits, the more adoption
we’ll see. Cheaper, faster, more private,
more secure, censorship-resistant—any
benefits at all—need to be emphasized
more than our personal beliefs.”

Jeremy Kauffman
LBRY Founder

Sam Patterson
Open Bazaar Co-Founder

“We have to stop trying to sell P2P as a
feature—it's an implementation

detail—and focus on building
legitimately good products that happen

to be P2P.

Yes, the discerning, educated user cares
about P2P, but most users are casual,

thus don't, and this isn't a bad thing!

We're already playing at a disadvantage
considering P2P is harder to build. If we

don't acknowledge this and act on it, it
becomes infinitely harder to even be in

the fight for the average user's attention
compared to centralised alternatives.”

“I think the content is the key to make
P2P technologies be more widely used.
As for developers: We have to make it as
easy to use and as fast as the
centralized Internet for the users and for
the developers as well. As for
community: one thing that that we could
do is create sites that describes each
project, lists the available content and
the possible use cases.”

Burak Nehbit
Aether Founder

Tamas Kocsis
Zeronet Founder

048 / THE REFORM 2

Last issue we showed you the Reform, an
awesome open hardware laptop project by
Lukas F. Hartmann. In the intervening year,
he's taken all the feedback and lessons learned
from V1, and is back now with an almost
completely redesigned Reform 2.

UPDATES

The i.MX6 CPU has been upgraded with the
faster i.MX8, and the system on chip
previously used is now replaced with a fuller
featured system on module board which
includes RAM, USB, PCIe interfaces, Ethernet
chip, etc. directly on the board.

Lukas explains, "We selected their
'Nitrogen8M SOM' module for Reform because
it is the only available module for which you
can download the complete schematics and
understand what every component does. This
means that anyone will be able to design a
replacement SoM to power Reform with a

THE REFORM 2 completely different CPU or an FPGA, for
example." All this is secured within the
newly-designed motherboard and slots in
directly via a 200 pin SO-DIMM connector.

The power system used has also been
upgraded, with Lukas teaming up with Fully
Automated Technologies, another open
hardware project, to deliver a pretty beefy
28.8V operating voltage via 8x 18650
batteries connected in series.

One of the cool things about this open design
is that if any of the cells fail in the future, you
need only replace them at ~€2.50 per cell,
instead of replacing the entire thing (looking
at you Apple).

In terms of ports and expansion capabilities,
the Reform 2 has gigabit Ethernet, 3.5mm
headphone/mic jack, a bootable SD card port,
HDMI port, and 3x USB 3.0 Type A high speed
ports, while internally there's a m.2 slot for an
SSD, and an mPCIe expansion slot for WiFi
cards, graphics cards, cell modems, etc.

Instead of being fully 3D-printed, this time the
keyboard features blank Kailh keycaps that

And finally, the entire thing is contained within
a newly-designed case by industrial designer
Ana Dantas. The black anodized and sand
blasted aluminum enclosure is slick, and
provides some extra robustness over the
previous 3D printed case.

Like the previous design, this version's CAD,
PCB, 3D-print files, firmware, schematics, and
bill of materials are all available at:

https://source.mntmn.com/MNT/reform
https://mntre.com/reform

can either remain unlabeled, be laser
engraved, or UV inkjet printed.

The Reform 2 display has been upgraded to a
larger 12.5inch, 1080p panel by Innolux, and
there's also a handy little 128x32px OLED on
the keyboard which can check the charger and
battery status without needing the operating
system. Lukas explains, "The keyboard OLED
and direct interaction mechanism has more
potential future uses, like a password
manager, crypto wallet or notification display".

THE REFORM 2 / 000

054 / SECURE SCUTTLEBUTT

Secure Scuttlebutt (scuttlebutt.nz) is an

open-source protocol used for messaging and

content sharing, with no reliance on

centralized servers. Starting in 2014, Secure

Scuttlebutt (SSB) aims to be a platform where

users can self-host content and exchange it

with peers in a secure, fault-tolerant manner.

HOW IT WORKS

The heart of Secure Scuttlebutt is a database

comprised of entries from message feeds.

Much like with Bitcoin and other

cryptocurrencies, SSB feeds are immutable,

append-only blockchains. Nobody can go back

and modify previous messages, and messages

SECURE
SCUTTLEBUTT -
DECENTRALIZED
SOCIAL MEDIA &
MESSAGING

cannot be "forgotten." Only the owner of any

given feed has permissions to write to that

feed, which is enforced by digital signatures.

SSB operates on the principle of "offline-first,"

meaning that data is established and kept on

the machine that originates it. After the data is

written locally, it is then made available for

others. With each user operating at least one

node within the network, Secure Scuttlebutt

tends to mirror real-life person-to-person

interactions within a population, via a P2P

network topology. Consider the use case of a

group of people who want to exchange

messages with one another. Each person

would run an SSB-based messaging

application on their own machine that will

write their outgoing messages to a feed.

Then, each person would follow the feeds of

everyone else they wish to message.

Data is exchanged via SSB through the use of

a peer-to-peer global gossip network. This

functions similarly to how a rumor might

spread through an office. When one peer

wants to get updates for a particular feed

from another peer, the requesting peer is

given more messages for other feeds within

their social circle that they may or may not be

aware of. This contributes to a characteristic of

the protocol known as eventual-consistency.

Over time, peers within a social circle (direct

friends, and sometimes friends of friends) will

have all messages shared with one another.

With the network architecture being set up like

this, peers do not need to have direct

connections between one another to exchange

content, and can instead use intermediaries to

forward data to an intended peer.

USAGE

While SSB itself has been adapted to many

uses such as music sharing, a git subsystem, a

chess application, and more, its most popular

use is for social networking.

Applications running on Secure Scuttlebutt can

be thought of as different views into the

greater Scuttleverse, the decentralized

network of SSB peers.

There are many different social networking

applications that use Secure Scuttlebutt. The

most popular is Patchwork, a desktop

application built on Node.js. Similar

applications like Patchfox, a social networking

client as a Firefox WebExtension, and

Manyverse, a social networking client for

mobile devices, will allow for similar views into

the Scuttleverse.

Social networking applications on the

Scuttleverse look and function much like

traditional centralized social networks such as

Facebook or Twitter. Users create an account,

follow other users, private message (securely,

using public-key cryptography), and

send/receive posts, photos, and likes while

participating in various conversation threads.

All data is first written to and stored on the

user's device, and then exchanged to other

peers over the Internet or on a local network.

Manyverse in particular is an intriguing

application for the Scuttleverse. By running on

mobile devices, Manyverse allows for a new

method of social communication between

people in Africa, Asia, and Latin America who

may have cheap mobile phones but limited

access to the Internet. While Manyverse

allows for data exchange over the Internet, it

can also use a WiFi or Bluetooth connection to

SECURE SCUTTLEBUTT / 057

Secure Scuttlebutt Consortium Member & Manyverse Creator, Andre Staltz

SECURE SCUTTLEBUTT / 059

facilitate communication. This makes it ideal
for off-grid living, communication in the event
of a natural disaster, or for use when the
Internet is censored or disrupted.

ADVANTAGES

Due to the offline-first concept and gossiping
nature of the protocol, SSB is ideal for those
with unreliable access to the Internet, such as
sailors, nomads, or people living off the grid.

As previously mentioned, SSB makes identity
verification easy, as messages can only be
appended to feeds with the digital signature of
the author. Forging messages is not possible.

Additionally, it aids in the prevention of spam.
Users will only download messages from
peers they follow (or optionally peers of peers),
minimizing unwanted content.

DISADVANTAGES

Due to the fact that a peer on the network is
ingesting feeds and creating a local cache for

offline access, Secure Scuttlebutt can take up
a lot of disk space. Additionally, it can take a
long time for messages to propagate
throughout the network. SSB could be used
for real-time communication, but it more
suited to non-urgent messaging.

Further, due to the decentralized nature of
SSB, new participants in the Scuttleverse
might be isolated from other peers because
there aren't any users nearby. To mitigate this,
SSB has the concept of "pubs," which are
public peers on the network that follow any
user back when they themselves are followed.
This allows for bootstrapping an initial
community, but is an additional step in getting
on the network.

CONCLUSION

Secure Scuttlebutt is a new take on how
people can communicate online, without the
need for centralization or always-on Internet
access. SSB, and the applications that use it,
become the must-have technology for anyone
spending time off-grid who still wants to
share information in a secure, reliable way.

Do you have a 3D printer sitting around collecting
dust? Want to make something more than toys and
other useless trinkets? Perhaps you have skills in
design, programming, or engineering that are being
wasted on unfulfilling bullshit?

There is a space out there waiting for you to fill it:
you can use your knowledge to work on important
things that will help others.

Some of you may already be in that place, but for
most of us who are searching, here are some open
source projects with big goals. Maybe one of them
will catch your eye or spark an idea of your own?

Many of them are tangibly contributing to improve
the world, and all could do with more help.

MAKING MEANING

The team are also currently working on a pulse
oximeter for measuring oxygen saturation, an
electrocardiogram for measuring the electrical
activity of the heart, and kidney dialysis device.

https://github.com/GliaX
https://glia.org

THE GLIA PROJECT

The Glia Project's goal is to create a range of
high-quality, low-cost open source medical
devices that can be manufactured in
low-resource settings.

So far the team has created a variety of 3D
printable tools including stethoscopes,
otoscopes, and tourniquets. Each item has
been tested in the field, all around the world
with Glia's own doctors and medical students.

E-NABLING THE FUTURE

Started in 2011, the e-NABLE project
matches those with full and partial upper
limb amputations and disabilities with 3D
printer owners and designers to provide
custom fitting, functional prosthetics.

There is a large community of around
20,000 volunteers in over 100 countries
that have provided an estimated 8,000
custom prosthetics to both children and
adults, giving them some degree of
autonomy back to their lives.

This is particularly helpful for children as it
can get expensive for parents to keep
replacing them as the kids are constantly
outgrowing their existing prosthetics.

The project site has a detailed map showing
local chapters all over the world, so it’s
really easy to find collaborators and people
in need who live nearby to you.

https://enablingthefuture.org

064 / MAKING MEANING

The open source designs for the ALICE can be
requested through the Indi website, with
priority given to engineers and clinicians, due
to the potential danger if used incorrectly.

The bill of materials is around €1500, making it
pretty accessible for a high tech piece of kit.

This current design is in clinical use.

https://www.indi.global/alice

ALICE EXOSKELETON

Created by the Mexico-based design and
engineering group Indi, the ALICE project is an
open source lower leg exoskeleton aimed
primarily at assisting the mobility of children.

After six years of research and development
and over $60,000 invested in the project, the
team have released a fully working
exoskeleton design that's available to the
world under the CC BY-NC license.

OPEN SOURCE BIONIC LEG

The Open Source Bionic Leg is a project

collaboration between researchers at the

University of Michigan and the Shirley Ryan

AbilityLab research hospital.

The team has come up with a fully

articulating robotic leg, complete with

automatic knee and ankle movement and

the ability to seamlessly switch between

activities like walking, going up stairs, or

down ramps. This function is all thanks to

the Raspberry Pi which runs inside.

The current bill of materials is around $28k,

which includes custom machined parts.

All the files and instructions are available on

the project site.

https://opensourceleg.com

068 / MAKING MEANING

OPENFLEXURE

The OpenFlexure Project makes high precision

mechanical positioning available to anyone

with a 3D printer.

The first project the team released was the

OpenFlexure Microscope, a little 3D-printable,

Raspberry Pi-based optical microscope,

perfect for scientific experiments.

https://openflexure.org

ATOMIC MICROSCOPE

This home-built scanning tunneling

microscope project by Dan Berard has

developed a fully working microscope, capable

of atomic resolution imaging in air.

Full details and source code for the project are

on Dan's website, so check it out.

https://dberard.com/home-built-stm

OPENPCR

PCR, or the polymerase chain reaction, is a

method of copying DNA molecules, and the

OpenPCR is a $500 open hardware machine

designed just for that task.

Often used for detecting infections & diseases,

testing water/food safety, PCR can also be

used to manipulate DNA and more.

https://openpcr.org

OPEN SOURCE IMAGING

The Open Source Imaging team have been

doing important work in the areas of magnetic

resonance imaging, aka MRI.

They have a range of projects currently

running including both advanced imaging

software and fully open source MRI machines.

https://opensourceimaging.org

PRECIOUS PLASTIC

Precious Plastic's goal is to look at

technological solutions to plastic pollution

around the world.

Started in 2013 by Dave Hakkens, the

project has grown to a community of

hundreds and has spawned multiple

machines that can recycle and repurpose

plastic in meaningful ways.

These include shredders for turning plastic

waste into tiny flakes, extruders that

convert the flakes into long lines of plastic

material ready for injection moulding or

pressing into new products.

The bustling worldwide community behind

the project has also created an

ever-expanding range of machines and

products based off all of this.

Well worth checking out.

https://preciousplastic.com

MAKING MEANING / 073

074 / MAKING MEANING

TYMPAN

Tympan is an open source hearing aid
development platform built on top of
Arduino IDE compatible hardware.

The goal of the project is to lower the
barrier for software and hardware
refinement, translating those
advancements into usable products such
as hearing aids, cochlear implants and
other consumer electronics.

Currently the Tympan is on revision D,
boasting a Teensy 3.6 processor,
Bluetooth interfacing, 2 on board Knowles
MEMS microphones, and expansion
options for other microphones or
speakers/headsets.

https://tympan.org

MAKING MEANING / 077

OSBEEHIVES

Open source beehives and
colony monitoring systems.

osbeehives.com

OPEN BIOMEDICAL

Open source 3D printable
health and biomedical devices.

openbiomedical.org

OPEN APS

Open artificial pancreas
system designed for diabetics.

openaps.org

FARMHACK

Open source farming tools.

farmhack.org/tools

MOBILECG

Open source clinical grade
heart monitoring.

github.com/peterisza

AIR CITIZEN

Air quality monitoring hardware
and software.

aircitizen.org

OPEN BRAILLE

Hardware and software for the
visually impaired.

github.com/carloscamposa

lcocer/OpenBraille

GLUCOMETER

Universal glucometer works
with any test strips.

hackaday.io/project/10865

ULTRASOUND DEVICE

Open source ultrasound
hardware platform.

un0rick.cc

F.LAB

3D-printed DIY science and
lab equipment.

progressth.org

FARMBOT

Automated farming gear.

farmbot.io

078 / MINI SERVER V3

THE NODE MINI
SERVER VERSION 3

Now that the Raspberry Pi 4 is out, we have an

excellent candidate to base the mini server on.

The faster processor and option for 8GB of

RAM opens up more possibilities for P2P and

self hosting applications, and is now more

than capable to work as a general Linux

desktop system too.

Like V2, this design is open source, and is

based on a 3D printed frame topped with a

PCB. This means you can style it however you

want, with custom PCB and frame colours, and

completely custom designs on the top cover.

The first thing you notice is the smaller size of

the device. It's approximately 90x90mm and

25mm thick, which is only slightly bigger than

the Pi 4 itself.

That makes it one of the smallest full-featured

mini computers/servers out there, and is

perfect for our needs.

The size and weight is also perfect for being

mounted on the back of a monitor to be used

as an all-in-one system.

SPECS

- 1.5GHz Quad core ARM V8 CPU

- up to 8GB LPDDR4-3200 SDRAM

- 2.4 GHz and 5.0 GHz 802.11ac WiFi, BT 5.0

- Gigabit Ethernet

- 2 USB 3.0 ports

- 2 USB 2.0 ports

- mSATA SSD via USB 3.0 port (max 2TB)

- 5V DC via USB-C connector (min 3A)

MODULAR

A main feature I worked hard on for this

iteration is modularity, and many of you will be

glad to know this version requires no

modifications to the Pi itself.

I created a custom adapter HDMI and USB-C

ports, leaving you with a selection of ports

perfect for server use, and all located on the

back side of the device.

INTERNAL SSD

Instead of a 2.5inch hard drive and a USB 2.0
adapter, Mini Server V3 now takes advantage
of USB 3.0 speeds and the small size of an
mSATA solid state drive.

I created a custom USB 3 extender, allowing
you to simply plug in the mSATA SSD adapter
into the Raspberry Pi 4.

The widely available USB 3.0 to mSATA
adapters you can find on eBay, are the perfect
size for this, with the screw holes on the Pi
lining up perfectly to the adapter.

With this being modular too, you can forgo the
SSD and just use the internal micro SD card if
you wish. Both work fine.

HEAT MANAGEMENT

Heat is more of a challenge when combining
the SSD and the Pi 4, so this time I decided to
include two fans inside which run constantly
when the server is turned on, providing a
constant stream of air around the parts.

PARTS

- Raspberry Pi 4
- Top PCB (88x88mm 1.6mm thick)
- Male USB3 PCB (7x14mm 2mm thick)
- Female USB3 PCB (19x14mm 1.6mm thick)
- Full size HDMI PCB (21x24mm 1.6mm thick)
- Micro HDMI PCB (14x18mm 1mm)
- Pololu USB 2.0 Type-C Connector Breakout
- USB-C Male Plug Breakout Board
- Micro HDMI Male Component (Wedge Type)
- Male USB 3.0 Plug (692112030100)
- Female USB 3.0 Connector (48405-0003)
- 25x7mm 5V Fan (JST XH 2-Pin connector)
- 10pin 100mm 1mm Pitch Flex Cable
- 20pin 50mm 0.5mm Pitch Flex Cable
- USB3 to mSATA SSD Adapter
- mSATA Solid State Drive (up to 2TB)
- HDMI Type A Connector (47151-1001)
- 10pin 1mm Pitch Connector - (52271-1079)
- 20pin 0.5mm Pitch Connector (52746-2071)
- 20pin 0.5 Pitch Connector (20FLZT-SM1-TF)

(All PCBs are made from standard FR4
material, and are 2 layers. You’ll be able to find
the files for the boards and 3D printable parts
on the NODE website)

MINI SERVER V3 / 083

084 / FREQUENCY CHART

Low Frequency RFID
125-134 KHz

Pager (USA, Unlicensed)
27.255 MHz

Cordless Phone (AM)
1.7 MHz

Cordless Phone (FM)
43–50 MHz

Near Field Communication
13.56 MHz

Pager (USA, Emergency)
152.0075,157.45, 163.25 MHz

Pager (Europe)
26.200 - 27.995 MHz

IOT Standard
169 MHz

Pager (UK, Medical)
26.230 - 26.870 MHz

Keyless Entry (USA)
315 MHz

Cordless Phone (FM)
27 MHz

LORA
433 MHz

FREQUENCY CHART / 085

Ultra High Frequency RFID
433, 860-956 MHz

GPS
1176.45, 1227.6, 1575.42 MHz

Keyless Entry (Europe / Asia)
433.92 MHz

Cell Phone (3G/GSM)
800, 850, 1700, 1900, 2100 MHz

LORA (Europe)
868 MHz

Cell Phone (4G/LTE)
800, 850, 1900, 1700, 2100 MHz

Cordless Phone
900 MHz

Bluetooth
2.4-2.4835 GHz

LORA (USA)
915 MHz

Microwave RFID
2.45-5.8 GHz

Aircraft Tracking
1090 MHz

WiFi (802.11b/g, a, n)
2.4, 5.0, 2.4/5.0 GHz

086 / THE ALOHANET

In the late 1960's, Norman Abramson had a
feeling that connecting computers over the
existing telephone network was a bad idea.
Abramson, then a 36-year-old professor of
both Electrical Engineering and Computer
Science at the University of Hawaii, foresaw
future data networking needs and didn't think
the telephone system architecture was up to
the challenge. It was time, he thought, to
move to the airwaves.

At the time, the University of Hawaii had a
total of seven campuses scattered around the
islands. A main campus sat in Manoa, a four
year school rested in Hilo, and five two year
community colleges were placed in Oahu,
Kauai, Maui, Hololulu, and Hilo (this is in
addition to the four year school mentioned
previously). Connecting campuses separated
by water was no easy task and telephone lines
were unreliable—clumsy and ineffective if a
storm were to roll through and wreak havoc.

Using radio equipment to link computing
resources together, Abramson speculated,
could prove to be a good alternative in terms
of reliability and control as UH would own the
infrastructure. However, wireless networks
like this were unheard of at the time; there
wasn't a turn-key solution that could be
implemented after a week or two of planning
and installation. Abramson, with his
newly-created experimental network team,
would have to build the system themselves.

After a few months, Abramson's team decided
on a random-access protocol for sending data
through the network. The network itself would
be structured in a star configuration with a
"hub" located at the Manoa main campus,
serving as both a topological and geographic
center. From there, each additional campus
(positioned up to about 100 km away) would
act as a client, only communicating directly
with the hub. Using a star model helped
reduce overall costs within the network as
only the hub needed to do the heavy lifting
and clients could get away with a more
modest set of resources. The network would
also implement a two-channel UHF radio
configuration, utilizing 100 KHz channels at

ISLANDS IN THE NET -
THE ALOHANET

THE ALOHANET / 087

407.350 MHz and 413.475 MHz, chosen after
the team received some advice from David
Braverman of Hughes Aircraft Company. One
channel would be devoted to client
communication, so any node could send
packets to the hub and only the hub would be
listening. The second channel was for
broadcast by the hub, which would send
acknowledgments back on successful client
transmissions. While each client would receive
every acknowledgment, it would be discarded
unless the transmission was specifically
meant for the client listening—the client only
cares about its own acknowledgments.

The random-access principle came into play
with regard to how clients would use their
communication channel. Due to how computer
traffic often happens in bursts, clients
transmit packets on the channel (dubbed the
"ALOHA channel") to the hub as soon as they
are available to go out. On successful
transmission, the hub sends acknowledgment
back on the broadcast channel. However,
clients never check to see if the channel is in
use before transmitting, so collisions can occur
if the channel is already noisy from another
client's traffic. To combat this, each client

monitors their acknowledgment packets from
the hub and will wait for a random amount of
time before retransmitting if they don't hear
anything back, indicating that their data was
lost or garbled along the way.

The structure of this network was unlike
anything else that was seen at the time for
connecting remote computing sites, which
often consisted of point-to-point telephone or
microwave links that could only accommodate
two connecting devices. Hardware for the
campus sites was something that still needed
consideration. How would all of these
locations process and convey information to
one or more peers? Team members Alan
Okinaka and David Wax built a custom
solution to be deployed at client sites: the
Terminal Control Unit (TCU). Constructed out of
an antenna, transceiver, modem, buffer, and
control unit, the TCU was equipped with a
standard RS232 interface to hook up to a
terminal, allowing data rates of 9500 bits/s
between client and hub. To save in hardware
costs, TCUs were only capable of half-duplex
communications—they could only transmit or
receive at any one time, not both. The central
communications hardware installed at the hub

088 / THE ALOHANET

was an HP 2100 minicomputer called the
Menehune. In the Hawaiian language,
Menehune translates to "imp," a direct
reference to ARPANET's Interface Message
Processor (IMP) which was being developed
around the same time. Unlike the TCUs,
Menehune was more robust and supported
full-duplex communication to allow
simultaneous transmission and receiving.

In June 1971, ALOHAnet (originally standing
for Additive Links On-line Hawaii Area) was
unveiled and became the first network to
connect computers via radio technology. At the
time, there was no group within the university
set up to commercialize research successes,
so the technology behind ALOHAnet was
entered into the public domain.

Throughout the next year, the team would
construct more TCUs to deploy to various
campuses within the university and run the
new network through its paces.

In the early 1970's, domestic satellites were
becoming the next logical step in wireless
network expansion, and Abramson's team was
keen on working with the new technology.

At this point in time, ALOHAnet's funding had
been switched to the Advanced Research
Projects Agency (ARPA) under the direction of
Lawrence Roberts, then known for his work
with the ARPANET.

By 1973, ALOHA technology would soon be
implemented in an experimental satellite
network, the Pacific Educational Computer
Network (PACNET), which connected NASA
Ames Research Center in California, the
University of Sydney, the University of Alaska,
and Tohoku University in Sendai, Japan via the
six-year-old ATS-1 satellite and low-cost
ground stations. PACNET was a success, and
the next step for ALOHAnet seemed to be, so
the team thought, to connect it up to the
ARPANET via satellite technology.

How the ALOHAnet was ultimately connected
to the ARPANET is a humorous story by
Abramson's account. In 1972, Abramson had a
meeting at Roberts' stateside office to discuss
the status of the ALOHAnet project. Roberts
was called out of his office for a few minutes
and Abramson happened to notice a list of
planned IMP installation locations on a nearby
blackboard for sites that would soon be added

090 / THE ALOHANET

to the growing ARPANET. Abramson was
planning on bringing up the topic of connecting
the ALOHAnet later, so he added "ALOHAnet"
to the board with a randomly-chosen date,
"December 17," written beside it. There wasn't
a good chance to bring the topic up after
Roberts returned to his office, and Abramson
forgot about it completely himself until he
received a call in early December from the IMP
deployment team who asked him to prepare a
location for installation. It seemed that
Roberts either thought he added that entry to
the board himself, or that it was an idea that
didn't need any further discussion.

On December 17th of 1972, ALOHAnet was
connected to the ARPANET, becoming the first
site added by satellite link. Over the following
years, ALOHANet refined its main protocol to
create "Slotted ALOHA," which allows
transmissions to occur only within certain
timeslots. Several nodes can operate in a
single timeslot, but if multiple nodes try to
transmit at the same time, a collision occurs
and they attempt transmission again in a later
timeslot after a random delay. This helped
greatly with network throughput by cutting
down how many nodes could attempt

transmission at a certain time, but didn't go so
far as to allow one node exclusive ownership
of a slot (which would slow down the network
even more, as discovered with the
development of Pure ALOHA years earlier). By
1974, with the introduction of the Intel 8080,
ALOHAnet received a hardware upgrade as
TCUs were replaced with new Programmable
Control Units (PCU) that utilized the new 8-bit
microprocessor. Now, network protocols could
be written in software instead of built into
hardware, meaning others could easily create
their own packet radio data networks with
readily-available chips. Packet radio networks
would become a point of further
experimentation by ARPA researchers, yielding
some success with networks like PRNET in the
San Francisco Bay area.

The connection to the ARPANET wasn't the
only important event for ALOHA in 1972. In
the same year Bob Metcalfe, a Xerox Palo Alto
Research Center (PARC) employee and
Harvard University graduate student, was
visiting his friend and ARPANET protocol
developer Steve Crocker while in Washington
for a business trip. Crocker had previously met
with Norm Abramson to discuss ALOHA, and

THE ALOHANET / 091

left a paper on the network out while Metcalfe
was staying for the night. Finding the paper
before going to sleep, Metcalfe read through it
and was disappointed in mathematical
assumptions made about the network's
performance and capabilities.

He would soon travel to Hawaii and meet with
the ALOHA team before returning to PARC and
breaking ground on a networking protocol for
their new Alto computer. Borrowing concepts
from ALOHA, Metcalfe would create the "Alto
Aloha Network," an experimental network
utilizing cables to link Altos in a lab
environment. The resulting network was a
success, and over a thousand times faster
than the wireless ALOHAnet. In a stroke of
brilliance, Metcalfe would devise a new name
for his technology: Ethernet.

As communications technologies evolved,
ALOHAnet's usefulness began to decline. Still,
many technologies that were invented for
ALOHAnet were later successful in commercial
use and are ingrained in many devices and
products used today. Slotted ALOHA would go
on to see use in satellite communications for
both military and commercial use, as well as in

set-top box communications, RFID
technologies, and mobile telephony (even in
3G phones!). Carrier Sense Multiple Access
(CSMA), a popular access control protocol used
by Ethernet, WiFi, and other technologies, was
directly inspired by ALOHA's random-access
channel architecture. While ALOHAnet started
as a simple experiment, it has forever shaped
the way we construct networks, and
ultimately, influenced the way we
communicate with one another.

—

Islands in the Net is a column exploring
ephemeral, decommissioned, or little-known
communications networks. This first installment
is only coincidentally about a network that was
literally used to connect several islands together.

092 / P2P LIVESTREAMING

One area of Internet activity that's exploded in
popularity over the past few years is video live
streaming, which in itself is a kind of
decentralization of what previously used to be
traditional broadcast media.

All of the main streaming services out there
today are centralized, and to be fair there are
advantages to that as live streaming is difficult
to implement through P2P systems.

There are some projects out there working on
just this challenge though, and I want to show
them to you.

HYPERCAST

The first is hypercast by Louis Center. This
super simple JavaScript app is a fork of another
project called hypervision, and is incredibly
easy to use. Hypercast runs on top of the Dat
network, and requires the Beaker Browser (or
other compatible browsers) to run.

P2P LIVESTREAMING To broadcast you simply need to clone the
GitHub repo and follow the instructions to run
the streaming server, you then press the [Start
Broadcast] button in the browser. Following
this, the stream will begin, and a dat://
address will be generated which you can then
share with your friends.

Anyone who goes to this address
automatically begins seeing your stream. The
data is shared around the connected users, so
there's no need for centralized servers.

Be aware though, that since you're connecting
directly to the other peers you'll all be able to
see each others IP addresses (unless using a
VPN or TOR).

Hypercast is currently very bare-bones, and
automatically streams the default video and
audio inputs on your system, but more options
are planned, along with audio-only
broadcasts, archiving, and chat.

github.com/louiscenter/hypercast

ON AIR STOP BROADCAST

dat:/ /39Hj819hHd98J8S

094 / P2P LIVESTREAMING

IPFS LIVESTREAMING

If you want a more customizable streaming
experience, you might want to check out the
IPFS Live Streaming project
(github.com/tomeshnet/ipfs-live-stre
aming). Set up by ASoTNetworks and
darkdrgn2k of Toronto Mesh, it was originally
designed specifically for streaming the Our
Network 2018 conference, so it has a lot of
extra features compared to Hypercast.

This method delivers something much more
akin to what 'traditional' streamers would be
used to. The example setup given by the team
(shown on the next page) and can utilize
multiple microphone inputs, and a mixture of
HD camera, projector and desktop streaming
inputs. This setup also supports a separate
controller laptop which runs OBS (Open
Broadcaster Software, obsproject.com),
which can stream to both HTTP & IPFS at the
same time, while also recording a backup of
the stream to an external drive.

The installation for this one is much more
involved, and has a lot of options, so you can
check that out on their GitHub page.

Once you start broadcasting, similar to
hypercast, different URLs are generated (both
for HTTPS and IPNS), and these can be used to
watch the stream.

CONCLUSION

There's something really exciting and powerful
about being able to set up a video livestream
without needing to use any services other
than a network connection.

These projects are both pretty young, but each
delivers working software that can grow and
improve over time.

If you have the skills to help, I'd recommend
checking out each project's GitHub page and
seeing if you can help out.

Microphone Audio Mixer Gigabit Internet

HD Video Camera Elgato HD60 Laptop Running OBS

Presenter Laptop AVerMedia LGP Projector

096 / CLEANING UP YOUR ONLINE FOOTPRINT

As the Internet continues to age, we're starting

to realize just how much information about

ourselves is floating around on random servers

around the world, and how far back it all goes.

You might not care about that old blog post, or

Myspace page that's still up, but maybe in the

future you will.

This kind of information is not only important

in terms of things like finding and keeping

employment--because we've ALL said dumb

shit one time or another--but also for more

advanced phishing and social engineering. If an

attacker can figure out details about you, what

you're like, what your interests are, where you

work, who you know, etc., then it's much

easier for them to craft a perfectly designed

attack to manipulate you.

The best rule is to not interact with the 'net so

you don't leave tracks in the first place, but for

CLEANING UP YOUR

ONLINE FOOTPRINT

normal people, here are a few tips you could

try out to reduce your online footprint.

Remember that there are levels of

effectiveness to this. Most of these won't do

anything to stop the employees of tech

companies or government agencies from

knowing your info, because they probably

already have searchable records already, but

against random people on the net and

potential attackers, some of this may help.

Search Yourself. The first thing to do

is search yourself, and see what's out

there. You can use multiple search

engines and search for things like

your name, physical address, email

address, usernames you currently or

have used, reverse search avatar pics

and photos you've uploaded publicly.

Delete Old Accounts. If you find a

bunch of old accounts that you

haven't used in a long time, it's

probably worth deleting them.

https://justdelete.me
will help you find instructions and

links for deleting different accounts.

CLEANING UP YOUR ONLINE FOOTPRINT / 097

Edit Old Accounts. If you cannot

delete these old accounts, the next

best thing is to change all the info,

contacts, and photos to random,

unrelated stuff. This means anyone

searching for you who stumbles

across your old profiles will see

completely different information.

It's also worth reseting old account

passwords to reduce the risk of

hijacking due to potential breaches.

Change Privacy Settings. If you want

to keep using certain social sites, but

don't want random people searching

everything about you, don't forget to

change the privacy settings on these

apps. Most of them have a private

mode which stops random people

checking out your profile, and it

usually stops web crawlers, too.

Look at Cached Sites. Old links may

be cached in different places, some

of which can have removal policies.

It may not work in all cases, but you

may be able to contact the site

owners to manually remove them.

Compartmentalize. Separating the

different areas of your digital life is

always a good idea. That means

using different usernames, email

addresses, and passwords for

business and personal tasks, and

never publicly linking these. This

makes it much harder to find

everything out if one area is

compromised somehow.

Remove Metadata. If you're going to

be uploading photos to social

networks, one way to reduce some of

the tracking and identifying

information is to remove EXIF

metadata. This makes it harder to tie

things like usage / location patterns

to you, which could in-turn be used

by social engineers to attack you.

Don’t Post. I know in this age of

nonsense, there's a compulsion to

tell everyone about every little detail

of your life, but if you don't need

to--and you probably don't--I would

resist the urge. This is the best way

to keep your digital footprint clean.

098 / LIBREROUTER

Starting in 2015, the LibreRouter project aims

to address the needs of community networks

by creating a hardware solution meant

specifically for mesh. All over the world,

community networks are thriving, but they are

often deploying off-the-shelf hardware that

was not intended for this purpose.

The LibreRouter aims to be an open platform

robust enough to withstand the elements,

poor line-of-sight, and limited power options.

It will keep the network running without worry

or constant tinkering. Coupled with the

open-source LibreMesh firmware (based on

OpenWRT), the LibreRouter is built to be the

de facto device for community networks.

Nicolas Pace is a representative for

LibreRouter, but he has additional experience

in community networks. Pace is also a

member of AlterMundi (altermundi.net).

LIBREROUTER -
AN INTERVIEW WITH
NICOLAS PACE

What are some good reasons to choose the
LibreRouter over off-the-shelf hardware
when building community networks?

The need of the LibreRouter comes out of the

frustration that is using off-the-shelf

hardware for building community networks.

For years the community networks movement

has been using off-the-shelf wireless

equipment for their networks (Guifi.net,

Freifunk, AlterMundi, SudoMesh, Funkfeuer,

among others)... but not without issues...

If any community would use them "as they

are," with the stock software, a high learning

curve is expected and there will be limitations

as per how they could be used. Basically, they

should be used as the manufacturer intended

them to be. For example, this infrastructure is

thought to be managed by a few, [and]

centralized, so it doesn't promote

decentralized management. It doesn't promote

local innovation, as it doesn't allow tinkering

with it. Also, it doesn't allow to locally fix

issues that the device might have related to

security or bugs that the manufacturer might

not even repair.

LIBREROUTER / 101

On the other hand, if you want to modify its

factory behaviour to do other stuff that the

manufacturer didn't design it for, prepare

yourself as it will be a bumpy ride. These

devices haven't been designed to be

repurposed, so a lot of useful information is

missing (no blueprints, manuals, or source

code [is] available) and the action of reusing

them is usually seen as shady (though legal).

Still, in general the devices that are available in

the market don't have the features required for

implementing community networks so

communities end up spending a lot of

resources adapting solutions that sort of

somehow partially solve the problem, but they

don't... so they find their way around it.

The LibreRouter is a stable and proven

platform for deploying community networks at

scale. It provides a geek-free approach too, so

anyone with no prior technical skills can learn

in 30 minutes to two hours how to set it up,

expand it, and maintain it.

It is also a technology that builds community

through building a network, [uniting] people ,

and encouraging collaboration.

How open is the hardware/software?

It is as open as it can be. The hardware designs

are being ported to KiCAD as we speak (we

used Eagle for the initial design because it was

the software the factory was most used to,

but decided to migrate to KiCAD so we can use

Open Source tools fully too).

The software is Open Source, and is available

at github.com/librerouterorg

Is the router free of binary blobs?

It is free of binary blobs. We still use chipsets

that are closed source (Qualcomm CPU,

Qualcomm Switch controller, Qualcomm

Wireless radios), but they are the most open

available right now. We have also chosen

radios that allow for innovation, they have

SoftMAC stack, meaning you can play around

with how the radio treats the data.

Is it easy to modify and debug?

The build process is pretty straightforward, the

same as OpenWRT (so any OpenWRT

developer can start right away).

102 / LIBREROUTER

Debugging it can be a little challenging. The
LibreMesh architecture is not typical, so you
need to understand how it works in order to
find yourself around the codebase, and as it is
an embedded system it has its [own
challenges] in itself.

It has all the debugging features available
(serial interface, JTAG, unlocked boot partition).

Some networks are already making use of
LibreRouters, how are they performing?

The first LibreRouter prototypes have been in
the wild for two years approximately.

The first communities that are using it are in
Colombia, Brazil, Mexico and India, and though
they have not been very public about it, they
are very happy about how it performs.

Something important to note is that the
LibreRouter project is much more than just the
router, it is an ecosystem for geek-free
community networks that include the router,
software, documentation, a support platform,
a learning community, everything in as many
languages as exist, with innovations in

spectrum to get the best for the most needed
areas. We are just at the beginning of a long
journey, that already looks promising!

How flexible are the LibreRouter and
LibreMesh software? Can I run LibreMesh on
my existing OpenWRT devices and have them
network with LibreRouters?

LibreMesh is a repository on top of OpenWRT
so wherever you can run OpenWRT, you can
run LibreMesh.

The reason why the LibreRouter exists though
is because we want the communities to have a
successful out-of-the-box experience when
deploying community networks, and in order
for that to happen we want to make sure they
have everything they need:

- Hardware that is reliable, well documented,
open, and well supported.
- A deployment process that is predictable,
and non-technical.
- A network that makes sense for them, that
they can understand and expand with no prior
knowledge.

Setting up a community network

LIBREROUTER / 105

LibreMesh works best on the LibreRouter, and

all of the features LibreMesh provides will be

supported on it (and because it is the only

option with all the hardware required for it, it

will be the best LibreMesh experience of all).

As the LibreRouter itself does not only come

with LibreMesh (and thus with OpenWRT)

from factory, but also is an open source

hardware router, the software can be changed

to whatever you want.

Do you recommend specific external
antennas that work well with the router?

The LibreRouter comes with three antennas!

Two 5ghz sector antenna 15dbi MIMO 2x2,

and one 2.4ghz sector antenna.

The best antennas we have right now are a

clone of the PowerBeam dish with two dipole

antennas as feeder.

We have done videos and tutorials on how to

build them, you can check it at here:

youtu.be/_3LyuF2qSSY
youtu.be/vjGvCFJJjRQ

When can we expect the LibreRouter to be
available for sale and is there an expected
price point?

The LibreRouter is becoming more and more

available as we become more capable of

delivering. If you are part of a community that

wants to use it, please let us know at

info@altermundi.net

The price that we expect it to have all around

the globe is ~170USD including taxes and

shipping. It is hard to predict these costs

across the globe, so think of this value as a

reference.

Thanks Nicolas. More information can be
found at the LibreRouter website:
librerouter.org

106 / DIGITAL ROT

DIGITAL ROT

I'm one of the only people I know who still

owns a flatbed scanner. It's thin, black, sleek,

but still makes that humming, whirring noise

when you turn it on so it can warm up. Back

when I was in school, I'd use it to scan books I

procured from the interlibrary loan service

offered by the university library. I could request

rare books from libraries all over, scan them

between classes over a few days, and

assemble digital files to peruse later.

These days, I primarily use the scanner for

digitizing old magazines and books. This is the

stuff you can't really find on the Internet. Sure,

maybe there will be an issue of something for

sale on eBay every now and then to support

proof of existence beyond a sparse Wikipedia

article, but a lot of the publications I get my

hands on are largely forgotten. Articles are

locked away from the world in these paper

safes until somebody pries one open and

exposes what they find.

I share my scans online; I don't believe in

keeping things in silos. I call this whole

process preservation, but is it really? We have

intact, readable books from hundreds of years

ago, but digital files from only a few decades

ago can be inaccessible, encoded in an

unreadable format or suffer from data

corruption and bit rot. We see a lot of issues

like this now when it comes to saving floppy

disks. There are maybe a dozen hardware

devices out there designed to back up disks

formatted for various computers or through

different archival methods.

The Commodore 64 stored data differently

than the Apple //, and you need to take that

into account to get an accurate copy. You can

make a bit-by-bit copy of a disk or read the

entire magnetic flux, but after you actually get

access to the files, you might find them to be

in a format that nothing will read. Or worse,

they might be corrupted as the media they're

on has degraded over time.

We take the life of a lot of our media for

granted. Floppy disks and magnetic tapes are

thought to last around 20 years before having

issues. Burned CDs and DVDs are good for

108 / DIGITAL ROT

about 10 years (pressed media is closer to 30),
along with solid state drives and flash media.
Hard drives and burned Blu-Rays are less
optimistic with expectancies of between two
and five years. Survivorship bias may come
into play if you think these times are more
than a little pessimistic. I have 30-year-old
floppies, burned CDs pushing 15, and hard
drives at 20+ years that are still functioning
and usable. The unfortunate truth is that these
are all on borrowed time. I can't count on them
for archival storage, and ideally I'd transfer
files to new media every few years before the
current vessel decays.

While physical media gets more difficult to
preserve every year, I worry more about our
native digital media. People are constantly
producing content these days, whether it be
music on SoundCloud or videos on YouTube or
podcasts on Podbean or blog posts on
Medium. Who is to say how many of these
companies or products will be around in ten
years and whether they will give an opportuni-
ty for users to export data if they're circling
the drain. What about the people who would
get there too late or aren't alive anymore as
we saw with the shutdown of GeoCities? Do
you trust YouTube to handle your videos or
Instagram to keep an eye on your photos for
you? If you don't keep a copy of your data, you
run the chance of losing it.

You've likely run into digital rot since you first
started using the Internet. Dead links have
always been a problem when it comes to
accessing content, and was actually a point of
consideration in the early days of the
Internet's design. The Internet was always
designed to be decentralized, and because of
this, it would always be a little bit broken.
There isn't any centralized authority keeping
information online, or notifying systems

FORMAT LIFESPAN

Floppy Disk 20 years

Magnetic Tape 20 years

CD / DVD 30 years

CD-R / DVD-R 10 years

Solid State Drive 10 years

Flash Memory 10 years

Hard Disk Drive 2-5 years

BD 100 years

BD-R 2-5 years

DIGITAL ROT / 109

owners when a host goes down so links can be
updated. The Internet is much more of an
organic system, with portions dying off as new
entries grow and take their place. There is
something beautiful about the chaos that goes
into creating the Internet; it feels perfect
knowing that it can't be perfect. That said,
anyone doing research and stumbling upon
what they think may be the perfect link has
felt the torment of being redirected to a parked
domain page. Ideally, good information is
shared and spread to multiple sites on the
Internet over time, but at the end of the day a
lot of that disbursement relies on amateur
SysOps and volunteers. People lose interest or
something else comes up. Some sites are
born, live, and die in relative silence.

While there is some beauty in the Internet's
constant state of change, a lot of issues can
arise as people treat it more and more as a
form of permanence. 30 years ago you may
have had a diary or a family photo album, but
now people turn to websites for the same
function. People put their trust into these
services to keep their data safe and available,
but it's a bit like handing your keepsakes to
some company far away that you can't visit,

and you can only hope they stay in business
and don't lose track of anything. MySpace lost
millions of MP3 files in 2019. Workshops for
the computer-illiterate teach people to move
all of their photos and documents to the cloud
so they don't have to worry about finding
things on their desktops or suffer losses from
hard drive faults. The problem just gets a
change of scenery.

Commercial content, not just user-created, is
also in a concerning state. Providers like
Netflix or Hulu really aren't producing a
physical catalog of their shows and movies, a
lot of which have the production value of
major motion pictures that get theater
releases. Over the last 50 years, we've gone
through a cycle where little physical video
content was made available to consumers,
then seemingly all video content was made
available, and now very little again. Do you
expect Netflix to be around in ten years? Okay,
how about 20? Sure, some other companies
might buy up parts of their catalog upon a
demise, but do you think you'll be able to see
every television show available now after 20
years of company death and restructuring?

110 / DIGITAL ROT

Will you have access to your digital video game
library in 20 years? Will modern gaming
consoles simply become useless pieces of
hardware, orphaned from online "always on"
networks that they depend on to run content
locally? Will subscription based software cause
a slow death for vintage computer communities?

Since the '80s, there has been a
back-and-forth between commercial
businesses and groups of hackers, crackers,
and pirates. Copy protection on floppy disks,
Macrovision on VHS tapes, and even more
modern DRM on audio, video, and gaming
content poses issues for the longevity of
media as it ages.

Whether they know it or not, people cracking
software and pirating content are archivists.
Because of work done by the minority, we can
physically store media that would otherwise
be inaccessible. We can save it for later. We
can worry a little less about it disappearing
overnight. If you can't physically point at a
piece of media, whether it be a game on a
floppy disk or a movie stored digitally on a
hard drive, you don't really "own" it.

If there is content out there that you want
saved, the only way to be sure it is preserved
is with citizen archiving. Learn how to use
wget to make website dumps, or youtube-dl
to save YouTube channels. Follow the 3-2-1
rule to save three copies of your data, with
two of them using different storage media,
and one of them kept offsite. Check your
backups, make sure it isn't too late if they
happen to fail. There is a lot of optimism with
emerging storage technologies, like
holographic discs and DNA, but if data isn't
kept safe until these technologies are
mainstream, it may be gone forever.

We've lost a lot of data, but hopefully we can
get better at saving it.

112 / UPGRADING THE X200

In the last issue, I showed you how to install
Libreboot BIOS firmware on the ThinkPad
X200, turning it into one of the freest laptops
you could own right now.

Though it's perfectly fine for everyday usage
(web browsing, non-intensive programs, and
even light editing), in some ways it's a little
outdated. That's why I want to show you how
to upgrade it in various ways.

Older laptops didn't usually aim to be the
thinnest devices possible, which is good for us,
because it gives us space to add different
mods and extras directly inside of the case.

1. PCMCIA SLOT

The X200 has a standard 54mm-wide PCMCIA
or PC Card Express slot, giving us some
expansion options (and space) inside.

These old ports also accept thinner 34mm
cards, and that's exactly what I went for.
I added 2x USB 3.0 ports, for better
connectivity and transfer speeds.

The 20mm space that was saved by using the
thinner card also gave me some extra room to
add a custom 3D printed insert into the slot
specifically for micro SD card storage.

The idea here is to have a few different micro
SD cards with live operating systems like
TAILS or something with hard drive cloning
utilities that I could always have on hand and
use with the X200's built in card reader.

2. UPGRADING THE RAM

The official specs state that the max RAM
capacity on the X200 is 4GB, but it actually
extends to 8GB, giving you a fair chunk of
memory to play with for more intensive tasks.

According to other X200 users, the machine is
a little temperamental with which RAM sticks
it accepts, so do your research. I used 2x
Crucial 'CT51264BF160B' 4 gig sticks.

UPGRADING THE
THINKPAD X200

UPGRADING THE X200 / 000

1 2

3 4

3. WEBCAM SLIDER STICKER

A standard addition to any laptop is the

webcam slider sticker. Whatever you're

security practices, it's always worth adding an

extra physical layer to interfaces for manual

control, just in case...

4.UPGRADING THE BATTERY

Another thing to replace is the standard

capacity battery with its larger 9-cell

alternative. This beast gives you 7800mAh

performance, which can stretch to almost 6-7

hours battery life. Pretty remarkable for an

ancient machine.

5. ADDING AN SSD

Another easy upgrade is to swap out the HDD

with an SSD, for faster booting and overall

performance. Another interesting idea is to use

an mSATA SSD to SATA adapter board, and this

gives you a load of extra space directly in the

drive bay that could be used to hook up other

custom components internally.

6. REMOVE INTERNAL WIFI CARD

If we remove the internal WiFi/Bluetooth card,

we not only get a bit more space inside for

other mods, but we can replace these

interfaces with mini USB dongle versions.

This gives us a bit better security as we now

have physical access over the connection,

meaning when it's unplugged the machine is

automatically (and verifiably) air-gapped.

HONORABLE MENTIONS

There are more mods you can make, which I

didn't get around to, but you may find useful.

The first is to replace the stock LCD panel with

the "HV121WX4-120" model. This doesn't

actually increase the 1280x800 resolution, but

nonetheless is regarded as a superior display

by X200 users due to it's more vibrant colours

and wider viewing angles.

There's also a free Mini PCIe space next to the

internal WiFi card, where you can install the

"F3507G" WWAN modem. This links up to the

UPGRADING THE X200 / 115

000 / UPGRADING THE X200

UPGRADING THE X200 / 117

internal antennas inside the X200, and the
SIM card slot (underneath the battery), to
give you 3G and GPS connectivity. If you
really wanted to go all out, you could create a
custom adapter that adds a hardware switch,
so you control when it's turned on and off.

CONCLUSION

This isn't going to smash any benchmark
tests, but that's not the point. What other
Linux system costs a couple hundred dollars,
and gives you this many interface options, a
free software BIOS, a CPU without backdoors
(that we know of), great keyboard design,
8GB RAM, and all-day battery life?

This upgraded system can handle most tasks
outside of heavy editing and gaming, and for
many, that's enough. I know I'm very happy
with how this turned out.

There's a reason these older ThinkPad's are
considered true workhorses. They're built to
last, and I suspect their sturdy designs will
be around for a long time to come.

5

6

IPFS 101

THE INTERPLANETARY FILE SYSTEM

IPFS 101 / 119

InterPlanetary File System, more commonly
known as IPFS, is an open-source protocol and
network to store and share hypermedia in a
peer-to-peer distributed file system. First
released in 2014, IPFS combines concepts of
distributed hash tables (or DHT), BitTorrent,
and Git to create an alternative to HTTP, which
currently dominates the web.

HOW IT WORKS

Two important design features of IPFS are that
it uses DHT for peer-to-peer networking and
Merkle DAGs to store data within the network.

IPFS is most commonly used by installing the
official IPFS application, and invoking it with
commands through your terminal. You can find
download links for pre-built IPFS packages
through the official website at ipfs.io.

After installing IPFS, here is how you can
interact with it and utilize the IPFS network.

1) Opening up a terminal, first initialize IPFS for
your user account:

$ ipfs init

initializing ipfs node at
/Users/NODE/.go-ipfs

generating 2048-bit RSA
keypair...done

peer identity:
Qmcpo2iLBikrdf1d6QU6vXuNb6P7hwrb...

to get started, enter:

ipfs cat
/ipfs/QmYwAPJzv5CZsnA625s3Xf2nemtYg
PpHdWEz79ojWnPbdG/readme

2) Behind the scenes, IPFS is creating a file
repository in your home directory at ~/.ipfs
and a peer identity for your machine.

3) To get started, there is an introductory file
available via the IPFS protocol with this hash
and file name:

QmYwAPJzv5CZsnA625s3Xf2nemtYgPpHdWE
z79ojWnPbdG

readme

4) You can access the contents of the
'readme' file using the cat command
as shown here:

120 / IPFS 101

ipfs cat

/ipfs/QmYwAPJzv5CZsnA625s3Xf2nemtYg

PpHdWEz79ojWnPbdG/readme

5) This file is only read locally on your system,
meaning you aren't on the IPFS network yet.
Join the network by invoking the IPFS daemon:

$ ipfs daemon

Initializing daemon...

API server listening on

/ip4/127.0.0.1/tcp/5001

Gateway server listening on

/ip4/127.0.0.1/tcp/8080

6) Behind the scenes, IPFS will connect to a
trusted default list of bootstrap peers which
exist within the IPFS swarm.

These peers will be used to learn about others
on the network when downloading files.

7) Suppose that a friend Bob wants to send
you a picture of his cat through IPFS, and
provides you with an address to the file:

/ipfs/QmW2WQi7j6c7UgJTarActp7tDNikE

4B2qXtFCfLPdsgaTQ/cat.jpg

8) Now that you are on the IPFS network, you
can issue a command to download it:

ipfs cat

/ipfs/QmW2WQi7j6c7UgJTarActp7tDNikE

4B2qXtFCfLPdsgaTQ/cat.jpg > cat.jpg

9) Behind the scenes, IPFS will check with its
peers to see if any of them have a file available
matching this hash and file name. If any of
them do have it, it will be downloaded, but if
not, IPFS will leverage DHT to explore the
network outward until it finds a node it can
retrieve the file from.

Files are stored in IPFS as objects called
Merkle DAGs, which are tree-like structures
containing chunks of data chained together.
When IPFS finds a node to download Bob's cat
picture from, it must follow the links in the
initial object it downloads until it retrieves
every fragment to assemble the entire file.

10) Now let's suppose that you want to host a
copy of Bob's photo, or any other file you
happen to download via IPFS. This can be
done by "pinning" the hash of the data you
have downloaded, which will store it locally on
your machine and make it available to others:

IPFS 101 / 121

$ ipfs pin add

/ipfs/QmW2WQi7j6c7UgJTarActp7tDNikE

4B2qXtFCfLPdsgaTQ

11) You may also want to host your own file on
the IPFS network. This will make the file
available to everyone as long as it is still
hosted on your machine, with the potential for
it to last even longer than that if another node
decides to pin it. Here we see how to host a
text file titled mytextfile.txt:

$ echo "this is a sample file" >

mytextfile.txt

$ ipfs add mytextfile.txt

added

Qme9chBZHSH3njh34FPZKWn7vQVcmL4nPVJ

mED3q9be6RE mytextfile.txt

While most IPFS interfacing is commonly done
via the terminal, running the IPFS daemon also
provides you with a local gateway to access
files via your browser or a Linux utility like
curl. With ipfs running, you could load
Bob's cat picture in your browser by visiting:

http://localhost:8080/ipfs/QmW2WQi7

j6c7UgJTarActp7tDNikE4B2qXtFCfLPdsg

aTQ/cat.jpg

To retrieve files on the IPFS network from a
machine without the software installed, the
IPFS developers have a publicly accessible
gateway at https://ipfs.io.

This means you could easily retrieve cat.jpg
from the following link, from anywhere with
Internet access:

ipfs.io/ipfs/QmW2WQi7j6c7UgJTarActp

7tDNikE4B2qXtFCfLPdsgaTQ/cat.jpg

While this illustrates downloading and sharing
single files, IPFS can also be used to share
entire directories. This is exciting as IPFS has
some more advanced mechanisms to assist
addressing data that may be updated or
otherwise changed. You could host a website
within IPFS and update it at any time while
users can reference it from the same address.

COMPARISONS

IPFS has some main differences from other
distributed storage platforms such as Freenet,
Storj, or MaidSafe.

Continued ĺ

122 / IPFS 101

IPFS allows for selective mirroring of data. Any
given node does not need to mirror the entire
contents of the network, or an arbitrary slice of
data containing content the user doesn’t want.

Additionally, IPFS is not bound to any
cryptocurrency. Unlike Storj and Maidsafe,
users are not required to pay a sum to have
their files on the network, and there is no
built-in incentivization for nodes storing files.

This, however, means that all mirroring in IPFS
is done voluntarily. There is a related project
called Filecoin which, much like Storj or
Maidsafe, incentivizes file storage on IPFS with
a new cryptocurrency.

FREENET
Design

Encryption

Censorship

Proof System

Compensation

Blockchain

Decentralized

Yes

Resistant

None

No

No

STORJ
Decentralized

Yes

Resistant

Proof of Storage

STORJ Token

Counterparty BTC

MAIDSAFE
Decentralized

Yes

Resistant

Proof of Resource

Safecoin

No

IPFS
Decentralized

Yes*

Resistant

Proof of Copy*

Filecoin Token*

Yes*

* With Filecoin

DOWNSIDES

The major downsides of IPFS stem from its
relatively low adoption rate when compared to
the Internet or other P2P storage networks.

Content discovery is limited as current IPFS
search engines are rudimentary, and file
addresses are more cryptic than those used
for HTTP resources.

IPFS Search -
http://ipfs-search.com

ipfs-search -
https://ipfs.io/ipfs/QmYo5ZWqNW4ib1
Ck4zdm6EKteX3zZWw1j4CVfKtnAzNdvu/

IPFS 101 / 123

Additionally, browser support is currently
lacking. Mainstream browsers do not currently
have native access for content hosted within
IPFS. There are however extensions for
Chrome, Firefox, and Brave that allow IPFS
access, while Brave developers are currently
working on including IPFS support natively.
The Beaker browser had IPFS support until
2017, and may consider adding it back
sometime in the future.

It is also important to remember that files
hosted on nodes are relatively public. This
means that files made available to the
network will inherently be tied to the IP
address of the machine they can be
downloaded from.

CONCLUSION

IPFS offers a unique step forward in the
storage and delivery of data across the web.

In the future, we can look forward to better
support of the protocol through our web
browsers, as well as widespread use in
applications utilizing it for data storage.

There are many interesting projects out there
already using IPFS right now, including (but
not limited to):

Decentralized online marketplace, OpenBazaar
(https://openbazaar.org)

Cryptocurrency bounty hunting platform
Bounty0x (https://bounty0x.io)

Decentraland, P2P virtual reality metaverse
(https://decentraland.org)

Ethereum-based P2P social network, AKASHA
(https://akasha.world)

DLive video livestreaming service
(https://dlive.tv)

Music and artist discovery platform, Audius
(https://audius.co)

To find out more about IPFS, check out the

project’s website - https://ipfs.io

MESHNET

ATLAS

MESHNET ATLAS - AFRICA / 125

Pretoria Wireless Users Group

Pretoria, South Africa
https://ptawug.za.net

Cape Town Wireless User Group

Cape Town, South Africa
https://ctwug.za.net

Durban Wireless Community

Durban, South Africa
http://dwc.za.net

Zenzeleni.net

Eastern Cape, South Africa
http://zenzeleni.net

Village Telco

Johannesburg, South Africa
https://villagetelco.org

Mesh Bukavu

Bukavu, DRC
http://meshbukavu.org

126 / MESHNET ATLAS - NORTH AMERICA

Redhook Wifi
Brooklyn, NY
https://redhookwifi.org

NYCMesh
New York City, NY
https://nycmesh.net

PittMesh
Pittsburgh, PA
https://pittmesh.net

Philly Mesh
Philadelphia, PA
https://phillymesh.net

PersonalTelco
Portland, OR
https://personaltelco.net

La Cañada Wireless Association
Santa Fe, NM
https://lcwireless.net

People's Open
Oakland, CA
https://peoplesopen.net

TFA Wireless
Huston, TX
https://techforall.org

CassCo WiFi
Detroit, MI
https://alliedmedia.org

Wasabinet
St. Louis, MO
http://gowasabi.net

Boston Meshnet
Boston, MA
https://bostonmeshnet.github.io

MassMesh
Boston, MA
https://massmesh.org

Toronoto Mesh
Toronto, Canada
https://tomesh.net

ZAP Sherbrooke
Sherbrooke, Canada
http://zapsherbrooke.org

128 / MESHNET ATLAS - AUSTRALIA

Melbourne Wireless
Melbourne, Australia
melbournewireless.org.au

Air-Stream
Adelaide, Australia
https://air-stream.org

MESHNET ATLAS - SOUTH AMERICA / 129

Network Bogota
Bogota, Colombia
https://networkbogota.org

Coolab
Throughout Brazil
https://coolab.org

Altermundi
Throughout Argentina
https://altermundi.net

Neco
Vietri di Potenza, Italy
http://progettoneco.org

AWMN
Athens, Greece
http://awmn.net

Wireless Leiden
Leiden, Netherlands
https://wirelessleiden.nl

WirelessPT
Moitas Venda, Portugal
https://wirelesspt.net

Wlan Slovenija
Ljubljana, Slovenia
https://wlan-si.net

Sarantaporo.gr
Elassona, Greece
http://sarantaporo.gr

Freemesh Denmark
Across Denmark
https://freemesh.dk

130 / MESHNET ATLAS - EUROPE

FunkFeuer
Vienna, Austria
https://funkfeuer.at

Freifunk Leipzip
Leipzip, Germany
https://freifunk.net

Freifunk Berlin
Berlin, Germany
https://freifunk.net

pjodd
Malmö, Sweden
https://pjodd.se

Southampton Open Wireless Network
Southampton, UK
https://sown.org.uk

Guifi.net
Iberian peninsula, Spain
http://guifi.net

Ninux
Across Italy
https://ninux.org

132 / CABAL

Cabal is a fairly new and experimental group
chat app that takes aim squarely at Slack and
IRC by offering a peer-to-peer alternative that
is easy to use. I don't know too much about
the team, but there seems to be a few Dat
Project and Scuttlebutt members in there,
which is really promising.

One of the interesting features of the app's
P2P nature is that it works offline and locally,
with chat histories and all the networking
syncing automatically, wherever it's used. I can
imagine that being particularly useful on
meshnets and other local networks.

If you want to check out more of the technical
details, and perhaps contribute to this
fledgling project, check out their GitHub page:

https://github.com/cabal-club

CABAL: THE P2P
SLACK & IRC CHAT
ALTERNATIVE

USING CABAL

Using the app is ridiculously simple. First head
over to https://cabal.chat and download
the desktop app, which is available for
Windows, Mac and Linux. There's also a
command line version on there.

Launch Cabal, then simply copy/paste the
public cabal:// address to whichever group
chat you want to join. After that, add your
desired nickname and click 'Join'.

That's it! In the background, the app works
similarly to Dat, and finds other peers
connected to the same address. You'll be
added to a standard looking chat room, where
you can interact with the other users. You can
add multiple channels like Slack, and configure
different channel settings.

GOOD TO KNOW

While all chats users are encrypted, the IP
addresses of those connected are not hidden.
Also be aware that anyone with access to your
cabal:// address key can join your chat.

>COMMAND
LINE
CHEATSHEET_

COMMAND LINE CHEATSHEET / 135

This guide will show you how to carry out a
bunch of cypherpunk-related tasks directly in
the Linux terminal. These should work with
most flavors of Linux, and some even work on
Unix-like system such as Mac OS.

(N.B. Some commands that appear on more
than one line, should all be typed on the same
line. This is due to the formatting of the zine)

GENERAL ENCRYPTION

The simplest way to encrypt/decrypt files is
with the OpenSSL utility. This is included with
pretty much all Linux operating systems, so
nothing needs to be installed.

ENCRYPTING FILES

$ openssl aes-256-cbc -in
~/File.jpg -out ~/Encrypted.file

“aes-256-cbc” This is the encryption cipher
we'll be using for this example. To check out
the different ones available, type in the man
openssl command and read the manual.

“-in ~/File.jpg” This tells openssl that
the input file (the one you want to encrypt) is
‘File.jpg’. If you don't want to type out the full
path for the file, you could just type -in (with
a space after) and drag the file in the terminal.

“-out ~/Encrypted.file” This is the
output file you will get. You can name it pretty
much anything you like, although it's worth
noting that you may run into problems if you
name the output file the same as the input.

After you press return, you'll be asked to
choose an encryption password. Type it in, and
after you press return, you'll be asked once
again to verify it.

Now if you check your home directory, you
should have a new Encrypted.file file
sitting there. This is an encrypted version of
your original File.jpg.

You can now delete the original file if you
want, using the rm utility. If it’s particularly
sensitive the srm command also works the
same and is more secure.

$ srm File.jpg

136 / COMMAND LINE CHEATSHEET

DECRYPTING FILES

In a terminal window, type the following and
press return:

$ openssl aes-256-cbc -d -in
~/Encrypted.file -out ~/File.jpg

This is almost identical to the command for
encrypting, except for a few things:

“-d” is included which tells openssl you want
to decrypt the file.

The -in file is now the Encrypted.File and
the -out is the original File.jpg.

Enter your decryption password. Press return
and your original file will reappear in your
home directory.

METADATA

We'll be using a utility called Mat, which stands
for Metadata Anonymisation Toolkit. (This will
only work on Debian-based Linux systems).
Install Mat using this command, press enter.

$ sudo apt-get install mat

VIEWING METADATA

If you want to check the metadata on a single
file, simply type the following and press enter,
with Example_File.jpg being the file you
want to look at.

$ mat -d Example_File.jpg

You can also check the contents of an entire
directory. The -c flag will tell you whether
each file in a directory is clean or not. Change
the path to the directory you want to check.

$ mat -c Example_Folder

REMOVING METADATA

If you want to clean a single file, type the
following and press return. You'll see a
confirmation if all goes well.

$ mat -d Example_File.jpg

To clean the contents of an entire directory,
you simply specify it's name instead of a file,
then press enter. Again, you will see
confirmation if successful.

$ mat Example_Folder

CHECKSUMS

Software devs often post file checksums on
download pages and/or social media as a way
for users to verify that they've downloaded the
exact file as the dev intended. If the file has
been tampered with or corrupted in transit, the
output hash will be different.

VIEWING FILE CHECKSUMS

We can use the shasum utility to perform this
task. Type the following, replacing the filename
with your own, then press enter.

$ shasum -a 256 Example_File.bin

Note that the -a 256 option allows you to
choose which algorithm you want, in this case

SHA 256. There are others availables, and you
can view them in the man page by running
man shasum.

Output will be a long alphanumeric string, e.g.
028901a417f96b286b309e48e2700a5d2fd
bc0f29e5b34538511db3170cf9787, and
this is unique to your file.

This is what you compare to the string posted
by the developer. If it's different, the file may
be corrupted, or has been tampered with.

GPG FILE SIGNATURES

Another way to verify the integrity of files is
with public key cryptography and GPG.

You will first need the signed software
package that you wish to verify (in this case,
I called it example_file.tar.bz2).

You also need the corresponding signature,
which basically has the same file name, with
the.sig suffix on the end.

Continued ĺ

COMMAND LINE CHEATSHEET / 137

138 / COMMAND LINE CHEATSHEET

Thirdly, you need the public key from whoever
signed the package in an ASCII text file. In this
example, the file is called public.asc. Most
software teams post this information on their
websites or publicly on social media.

VERIFYING SIGNATURES

If you haven't already, import the public key by
typing the following, then press enter:

$ gpg --import public.asc

If all is well, you'll see a confirmation

Now we need to verify the fingerprint of the
public key. These are usually posted on either
the developer's website, or on social media.

The aim is to match what you see on your
terminal with what has been publicly posted in
order to prove it's from the correct person.

$ gpg --fingerprint 4F25E3B6

The final step is to verify the software package
by inputting the following, and pressing enter:

$ gpg --verify
example_file.tar.bz2{.sig,}

The bit you're looking for is "Good signature"
message. The key ID should be the same as
the one you imported a few steps back.

ENCRYPTED EMAIL

GNU Privacy Guard or GPG is an application
that facilities public key cryptography, and is
widely used for sending and receiving
encrypted emails.

For the beginners out there, each public key
has a corresponding private key, which only
the owner of the key has access to, so the idea
is that messages can be cryptographically
signed with a person's private key in order to
prove it comes from the correct person.

It’s the same idea as verifying signatures in
the previous section, but used for emailing.

People share their public keys on their sites,
social media, or websites like Keybase, as a
way to publicly tie this identity to themselves.

GENERATING A NEW KEYPAIR

If you don't have you're own keypair, type the
following, and press enter:

$ gpg --gen-key

Follow the prompts to generate your key.

EXPORT PUBLIC KEY

$ gpg --export -a "User Name" >
public.asc

Change "User Name" to whichever name is
associated with the key you wish to export.
This will create the file public.asc, which
you can share with others.

DELETE PUBLIC KEY

If you want to remove a public key from your
public key ring, enter the following:

$ gpg --delete-key "User Name"

ENCRYPT EMAIL

$ gpg -e -u "Sender User Name" -r
"Receiver User Name" myfile.txt

Change the "Sender User Name" and
"Receiver User Name" to the names
associated with the keys in your key ring, and
obviously change the filename to the email
message you wish to send.

You'll be asked for your passphrase, and a new
file myfile.txt.gpg will be generated. This
is what you add as an attachment in your
email/web client. Be aware the original file still
exists too, so if you need to, delete it.

DECRYPT EMAIL

$ gpg -d myfile.txt.gpg

Input the above, then press enter. You’ll be
asked for your passphrase, then after it’s
successfully entered, your newly readable
email file will appear in your home directory.

Again, remember the original file will still exist.

COMMAND LINE CHEATSHEET / 139

140 / ZERO TERMINAL

For those who haven't seen the previous
versions of the Zero Terminal, it is a Raspberry
Pi Zero-W all-in-one computer, primarily
designed to be used through the text console
(hence the name).

The command line is a ridiculously powerful
tool in the right hands, and I have always
wanted to make my own system that's worthy
of being THE go-to for portable Linux
activities. This is why in the years since the
last design, I have been thinking hard about
how to go about it.

What I've come up with is a prototype which
takes a different approach than before, this
time aiming for a highly modular platform
which gives the user lots of expansion options.

The design basically revolves around the
Waveshare AMOLED 5.5inch 1080p
touchscreen, which is a great piece of tech.

THE ZERO TERMINAL
PROTOTYPE (V3)

The entire device ends up being about the size
of a fat smartphone, at about 13mm deep.

On the back there are two PCB sockets, and
this is where the real power of the Zero
Terminal becomes apparent. These are 2x
40pin sockets which connect directly to the
Pi's GPIO. The idea is for this to be a platform
where others can design a range of *back-
packs* which plug directly into the back of the
device to increase it's abilities.

The first prototype backpack I have created is
a slide-out keyboard. Combine that with i3
window manager, and you have quite the
productive handheld Linux machine. Even
though the Zero isn't the most powerful
computer, you can still get a lot done through
the terminal since it uses up a fraction of the
resources that a GUI does. It still needs quite a
bit of work, but you can see the potential for
something like this.

I can imagine a mixture of application specific
backpacks being made to suit peoples needs.
Things like radio transceivers, extra network
interfaces, drone controllers, TV tuners, solar
panels, and simple stands are all easily doable.

ZERO TERMINAL / 147

The 1080p touchscreen also lends itself to
custom programs that would help increase the
usability of such applications. I even
experimented with the "matchbox-keyboard"
utility, which adds an on-screen Android-like
keyboard to the touchscreen.

I have registered ZeroTerminal.org, which
is currently redirecting to N-O-D-E.net. Over
the coming months, I want to make a website
to help build up the platform, showing people
exactly how to make these, and showcasing all
the backpacks and custom apps other users
create. Eventually it would be great to even
design our own screen boards, allowing us to
make everything even smaller.

COMMAND LINE APPS

Here are a few great text based apps that
work well on the Zero Terminal (and Raspberry
Pis in general).

Firstly, if you’ve ever wondered how to install
i3 on Raspbian, this guide will show you how:
steemit.com/@joedoe47/easily-run-i3

-on-raspberrypi

Micro is an excellent text editor, that looks and
works very similar to other editors like
Sublime Text. Highly recommended.
https://micro-editor.github.io

Midnight Commander is a visual file manager
that works through the terminal.
https://midnight-commander.org

Htop, the interactive process viewer. This is a
must for keeping an eye on the system.
https://hisham.hm/htop

Browsh is a modern browser that works
entirely inside the terminal. Images are
replaced with ASCII to significantly reduce
bandwidth and browsing speed.
https://brow.sh

Newsbeuter is a cool little utility for managing
and viewing RSS feeds.
https://newsbeuter.org

148 / AKASHA

One of the crucial components of the emerging
decentralized web is the need for a good P2P
social network. AKASHA, which stands for
'Advanced Knowledge Architecture for Social
Human Advocacy' is one such contender taking
on the challenge.

Founded in 2015 by Ethereum and Bitcoin
Magazine co-founder Mihai Alisie, the project
uses both the Ethereum blockchain and IPFS
to deliver a social network similar to Medium
or Reddit—all without any central servers.

I spoke with Mihai about the project, his
thoughts on free expression, and where
AKASHA could go in the future.

Check it out ĺ

AKASHA INTERVIEW -
DECENTRALIZED
SOCIAL NETWORKING
WITH MIHAI ALISIE

Why was AKASHA started?

Our journey started as an experiment to see if
it is possible to create a free channel of
expression working in a completely
decentralized fashion.

In order to achieve this we used things like
Ethereum smart contracts and IPFS wrapped
up in a simple-to-use social application.

Since then we've been compared many times
to today's social media platforms but our
intention was never to become "the new
Facebook," "the new Twitter," or the new "X."

Our intention was, and remains, to create
something simple to use but meaningful in the
way it works—proving in the process that
"there's a better way now" to tackle BIG
problems, even if sometimes they seem
almost "impossible to solve."

This is how we started thinking about
blockchain technology in the context of our
freedom of expression as individuals, since
individual self-expression is critical to
maintaining a healthy balance in societies.

AKASHA / 151

But, in the phase that we announced on May
3rd 2019 under the name "AKASHA Reloaded"
we outlined another side to the problem in the
form of collective freedom of expression, often
ignored and/or suppressed.

If you think about it, our ability to come
together as one and express ourselves as a
collective is one of the most powerful and
natural thing we can do as social creatures but
the tools enabling this type of interaction are
either limited or inexistent.

We call these pockets of individual and
collective freedom AKASHA worlds.

How long have you been working on this, and

how big is the team?

The project started in July of 2015, with the
first prototype being developed by Marius in
Q4 of the same year; we closed out that year
as a team of 4 people, driven by passion and
inspired by "what-ifs."

On May 3rd, 2016 also known as World Press
Freedom Day, we publicly announced the
AKASHA Project. We chose this day as the

cause of press freedom is something which is
extremely important to the team and project
as a whole. The suppression of the
fundamental human right to freedom of
expression anywhere causes damage to
everyone everywhere, and in these times of
government overreach and corporate control,
it has become more and more of a day to
reflect upon the problems that we need to
solve as a society.

We sent alpha 0.1 invitations in Q4 of 2016,
with the first public alpha, 0.2, being released
on January 16th of 2017. By the end of that
year AKASHA had grown to a team of 6
wonderful people. We went on to release our
public beta in February of 2017, calling out for
people to help us stress test the app, smart
contracts, and crypto-economic assumptions.
By the end of 2017 AKASHA comprised 7
people, and we were on the lookout for more
people to join us on our journey!

In 2018 we engaged in some deep research to
find solutions to some of the problems that
had arisen after the beta release, put out a
web version of the beta, presented at the
Heidelberg Laureate Forum, and grew to 12.

152 / AKASHA

Last year this whole process of researching,
questioning, and conceptualizing culminated in
the posting of two long-form posts:
Metamorphosis I and II, which you can read on
our blog (akasha.org/blog). Both of these
posts explored the ideas that had brought us
to this point of our journey, and gave some
clues as to the direction that we were
intending to take the project in through 2019,
2020, and beyond! On top of this, we also
presented at the World Economic Forum,
joined the World Wide Web Consortium, and
celebrated World Press Freedom Day once
again by announcing the AKASHA World
Framework through the post "AKASHA
Reloaded: Three Spins Around The Sun Later"!

We followed up this announcement at Devcon
5 in Osaka by unveiling ethereum.world, the
first world to be built using the framework. By
the end of 2019, the team stood at 15 people,
and looking to the future we are sure it won't
stay that way for long.

One of the big challenges of P2P systems is
decentralized moderation. What kind of
system does AKASHA use to limit things like
spam and other unwanted content?

At the moment this is kind of an open
question as we envisage future worlds
needing different methods for moderating
things. We want to empower world creators
by giving them access to a variety of ways that
they can curate the content that exists in the
worlds that they bring into being, with all of
these sharing the same open data layer
powered by IPFS.

What platforms can you use AKASHA on? and
how easy is it for users to manage their
identities on various devices?

The first "world" built with the AKASHA World
Framework will be ethereum.world, a
project seeking to unify the Ethereum
ecosystem by integrating decentralized apps
into a simple, delightful social experience.
Those interested are invited to sign up for
early access, suggest features, propose
integrations, and nominate values using the
canny.io board hosted on the site.

Ethereum apps and services integrate once
but can be reused everywhere, and so any
steps taken to bring in projects at this early
stage will have an effect upon what is

available to future users and world builders.
The platform approaches identity as an
integration, and so there will be a variety of
options in terms of identity providers when it
comes to accessing the platform; if any
readers have services that they think it would
be unwise to overlook, we'd appreciate them
submitting them via ethereum.world.

Nice, so what are your long-term plans for
the wider AKASHA project?

Looking at the bigger picture, the ecosystem
approach will enable people using the platform
to float between any following worlds built
with the AKASHA framework, finding different
communities, different pieces of functionality,
and different causes.

We are working to provide people with a tool
that can unlock the latent power of humanity,
expanding our collective minds at local,
regional, and global scales.

That seems like a huge and worthy goal.

Where's the best place to go to learn more,
and perhaps contibute to the project?

People looking for further information should
visit our website, especially the posts that
have recently been written up by our dev team
(akasha.org/blog/category/dev/), as
well as visiting our YouTube channel and
checking out our DEVCON 5 presentation
(youtu.be/CaMXa6R-jyI).

Thanks Mihai.

All the best for you and the team. I'm very
interested to see where the AKASHA project
goes in the coming years.

AKASHA / 153

154 / THE NFC CARD

THE NFC CARD

The NFC Card is a data card that lets you
wirelessly transfer different types of data to
phones and other NFC readers.

Much like the NFC Keys mentioned previously
on the NODE website (N-O-D-E.net), these
cards have multiple chips with corresponding
buttons, so you can program and read
different data on demand.

The button switches break the antenna circuit,
so the chips can only be read when the
buttons are pressed. This prevents passive
reading which standard NFC tags, stickers and
tap-to-pay cards are susceptible to.

The design is credit-card sized (86 x 54mm), so
it will fit inside your wallet with no problem. I
also intentionally used extremely low profile
components for the chip and buttons (less
than 1mm height) as well, leaving us with a
size and thickness that's basically the same as
a regular credit/debit card with embossed
numbers & characters.

The tiny chips have 106 bytes of storage each,
making it useful for various applications;
crypto address, URLs to GPG keys, websites or
social media links. Phone numbers would also
work, as well as door access and other ID
(Though it depends on the RFID system used).

To make your own, the PCB specs are as
follows: 86x54mm board, 0.8mm thick FR4
material, 2 layers. The files will be on the
NODE site, so search for them.

The parts used in this design are the
"SL2S2002FTB,115" NFC chip, and the
"EVPAWCD4A" single pole, single throw tactile
switch. Both are very small surface mount
components, and will require reflowing.

If you're going to design one from scratch, use
an antenna generator to estimate the size
needed. Remember that you'll have to make
sure the inductance from your antenna design
generates the correct capacitance for the chip
you use. Too low and the chip won't power on,
and anything too high will permanently
damage it. Most chips have a little wiggle
room, so don't worry if it's slightly out. Read
your chips datasheet for more information.

158 / BGP

In 1989 the Internet as we knew it was on the
verge of collapse. This wasn't due to limited
adoptability or lack of interest--quite the
opposite--for the first time ever, individuals
outside of academia and the military were
going online in droves. The network was
overloaded, and nobody had a solution.

The Internet at the time looked very different
than it does today. The National Science
Foundation Network (NSFNET), birthed in
1985, was created as something of a
successor to the aging ARPANET project.
Starting with five supercomputing centers
linked via 56 kbit/s links, the network would
expand to 13 nodes utilizing 1.5 Mbit/s (T-1)
links by 1988. These backbone nodes allowed
for connection to 10 regional networks which
in-turn allowed access to 170 additional

CONNECTING THE
INTERNET - HOW BGP
WORKS, AND
SOMETIMES DOESN'T

networks across the United States. This was
an amazing advancement for the exchange of
information online, but with the inclusion of all
of these networks, the NSFNET as a whole
would become more congested.

At the time, traffic was routed between
networks within NSFNET using a relatively
young protocol called Exterior Gateway
Protocol (EGP). EGP, formally specified in 1984,
allowed gateway hosts within disparate
networks to talk to a core router that would
act as a traffic controller for sending data in
and out of the separate networks it linked
together. EGP structured the network in a
tree-like topology, where smaller networks
would connect up to these core routers which
would then be connected to other core routers
within the larger NSFNET. While EGP worked
well initially, as the network grew it started to
show issues as routing data began to take up
more network traffic and routers struggled to
handle growing lists of routes that specified
how data was to traverse the network.

The big fix for NSFNET's routing problem came
in 1989 from two friends, Kirk Lougheed of
Cisco Systems and Yakov Rekhter of IBM,

having lunch at an IETF meeting in Austin,
Texas. The pair recorded their design for a new
routing protocol onto two napkins, which
would be developed into what is now known
as Border Gateway Protocol (BGP). Formalized
in June 1989, Border Gateway Protocol is often
referred to as a "two-napkin protocol" to
showcase its simplicity. At the time, BGP was
considered something of a hack or quick fix to
the the existing routing issues--there wasn't
much thought put into security, or
future-proofing the design. Network
operators, valuing working solutions and
simple designs over bureaucracy, quickly
adopted the protocol. BGP became the de
facto way of routing traffic between networks
in short order.

The fundamental change with the introduction
of Border Gateway Protocol was the shift to a
mesh topology. While Exterior Gateway
Protocol required networks to connect
together via core routers, BGP allows
networks to connect directly with one another.
Through mesh, networks could connect in a
decentralized fashion, with no reliance on
centralized network points. Additionally, BGP
improved traffic flow by implementing a "best

path" algorithm (known as path vector
routing) allowing routers to advertise which
routes they have access to for facilitating
traffic flow within the NSFNET. Essentially,
each router can show the paths by which data
can flow through them and to a destination.
Further, network operators received the ability
to be selective with where their traffic went; if
an operator doesn't want their traffic to go
through a competitor or a known unstable
network, they could choose to route around it.

To fully understand how BGP works, we have
to introduce the concept of an Autonomous
System (AS), which is essentially just a single
network within a larger internet. When traffic
flows across an internet, it travels through
various autonomous systems before reaching
a final autonomous system containing the
destination machine. There can be many
routes to get from one autonomous system to
another (traveling through other, different
autonomous systems along the way), but
most BGP routers are configured to prefer the
shortest path (least number of hops, networks
to pass data through) to get data to a
destination the fastest.

BGP / 159

160 / BGP

GETTING ON THE INTERNET

But how do networks even get on the Internet
in the first place? It all starts with getting IP
address allocations. This is normally done via
an IANA Regional Internet Registry (RIR) such
as AFRINIC, ARIN, APNIC, LACNIC, or RIPE NCC
depending on where the autonomous system
is physically located. If using IPv4, a network
needs a minimal allocation of 256 addresses
(referred to as a /24, with a range like
xxx.xxx.xxx.0-xxx.xxx.xxx.255) to be routable
on the IPv4 Internet. However, due to
registries running out of IPv4 addresses to
allocate, organizations must buy address
blocks second-hand from private
organizations. If using IPv6, a network needs a
minimal allocation of
1,208,925,819,614,629,174,706,176
addresses (commonly referred to as a /48,
with a range like
xxxx:xxxx:xxxx:0000:0000:0000:0000:0000-xx
xx:xxxx:xxxx:ffff:ffff:ffff:ffff:ffff) to be routable
on the IPv6 Internet.

Aside from addresses, an organization also
needs to register for an Autonomous System
Number (ASN) to uniquely identify the network

on the greater Internet. ASNs are formatted
with the letters "AS" followed by a string of
digits, to create something like "AS1234."

Currently, IPv4 addresses cost $25 each on the
second-hand market, meaning an AS would
need to spend a minimum of $6,425 if they
wanted to use IPv4 addresses. IPv6 addresses
are significantly less expensive, coming out to
fractions of a penny for each address. For the
minimum /48 allocation, an AS would have to
spend only $250 if they wanted to use IPv6
addresses. Acquiring an ASN also comes with
an associated cost of $550. If an AS wanted to
proceed with registering an ASN and acquiring
both IPv4 and IPv6 address space, the total
upfront costs would be $7,225. Additionally,
there is an annual maintenance fee of $350
(waived at time of initial registration, going
into effect the following year).

THE PHYSICAL INTERNET

After an Autonomous System has all of their
designations, they still have to physically get
on the Internet. This is often done at Internet
eXchange Points (IXPs) and various Carrier

Hotels (data centers where many Internet
Service Providers have infrastructure). These
locations are usually housed in large, robust
buildings that are often fireproof and
sometimes even bombproof.

As they are critical to keeping the Internet
operating, these facilities may also be guarded
and appear unassuming from the street.
Within them, many networks have a physical
"edge" of their network known as a Point of
Presence (PoP). A PoP typically consists of
some amount of servers and networking
equipment, and is commonly used for
connecting a network up to Internet Service
Providers (ISPs) and other networks.

Being located in one or more IXPs allows
different organizations to more freely and
easily share data with other, neighboring
networks. Keep in mind however, that not all
networks need to have a physical presence in a
data center to become a part of the Internet.
Many major cities have regional fiber networks
spread underneath the streets that can
connect buildings up to an ISP. A provider
might hand off a cable with a BGP session to
their router sitting at the other end--just as

though you were physically connected to them
in a data center!

Much like with a home LAN, data centers will
often run layer 2 networks that allow two
networks to connect their BGP routers with
one another for traffic exchange. Some data
centers may even simply run an ethernet cable
directly between two BGP routers to facilitate
a connection.

HOW NETWORKS CONNECT

While it is obvious by now that all
organizations on the Internet talk to one
another via BGP, there are different
relationships between networks on the
Internet that dictate how networks can
connect to one another.

Network connections can be broken down to
two groups: peering and upstream transit.
When two networks want to connect with one
another, they must negotiate a connection
deal. Oftentimes, a network will have one or
more upstream providers that can route traffic
upward to the larger Internet as a whole,

BGP / 161

162 / BGP

much like you may see with a residential ISP
and one of their customers. This is almost
always a relationship where a customer is
paying a provider.

In contrast, peering can exist between two
networks of somewhat equal size and position
where it is deemed mutually beneficial to
connect. For example, an organization like
Google might want to peer with an
organization like Digital Ocean so users on
each network can access resources on the
other directly, without having traffic traverse
networks owned by upstream transit
providers. Users on both networks get the
benefit of having fast access that is just one
hop away, while the networks themselves can
benefit from this direct connection by
bypassing any upstream providers who would
normally charge transit costs. Peering is often
done freely with no money exchanging hands
as both parties benefit from it equally.

When networks actually connect with one
another, they are essentially exchanging route
information. Each network advertises IP
ranges that they control, while also potentially
sharing routes for other networks that can be

reached through them. All networks will have
IP addresses that they advertise as being
available to access, but not all of them will
allow others to route traffic through them to
more distant networks.

THE TIERED INTERNET

When networks connect to form a mesh, there
is still some semblance of a hierarchy to the
different networks based on size and ability.
The Internet as we know if is split into 3 tiers,
forming something of a pyramid.

Tier 1 networks (at the top) make up the
backbone of the Internet, and usually have
physical infrastructure spanning a whole
country. These are large networks like AT&T,
Sprint, Verizon, Century Link (and formerly
Level3), etc. Below the tier 1 networks are the
tier 2 networks. These are still mostly large
ISPs, but are more regional and need to
purchase some transit from a larger tier 1
network to get a whole view of the Internet.
Some examples of tier 2 networks include
Cogent, Comcast, and Hurricane Electric.

At the bottom of the pyramid, there are tier 3
networks. In general, tier 3 networks are
"everything else," and can include smaller
last-mile ISPs, businesses, and schools. Tier 3
networks will always need to purchase transit
from a tier 1 or tier 2 network for access to the
entire Internet. Considering relationships
based on this tier system, smaller networks
will be paying larger networks for transit as
you work up the tiers. However, networks that
exist on the same tier will often peer with one
another without paying any money for that
connection. For example, if Comcast uses
AT&T for an upstream provider, Comcast will
pay AT&T for transit, but Comcast and
Hurricane Electric may exchange traffic freely
between one another for no payment as it
benefits both of their networks (similar to the
example with Google and Digital Ocean
explained earlier).

An interesting phenomenon we are now
seeing within the Internet is something called
"Donut Routing," where larger, tier 1 networks
are often being routed around to avoid transit
costs. As smaller networks gather more
peering agreements, they can reduce their
overall costs and rely less on larger networks.

BGP SECURITY

When BGP was written, there were very few
security precautions taken for assuring proper
use of the protocol. Even now, decades later,
few network operators implement anything
for security purposes. Initially, there was no
thought that anyone would do anything
nefarious with the BGP protocol, and even
today, most operators rely on the honor
system to make sure their peers are behaving
properly. That said, BGP security incidents
happen almost every day! For every issue you
may hear about in the news, there are dozens
that are never heard about.

There are three main types of BGP security
incidents that can occur: a route leak, route
hijacking, and denial-of-service (DoS) attacks.
A Route leak occurs when content in the BGP
routing table is accidentally or maliciously
altered, so traffic can't reach its intended
destination. This is like a network is saying
"use me to get to this destination" when it
cannot properly route traffic or wants to
eavesdrop. Route hijacking is when a bad actor
announces a victim's IP addresses, rerouting
all target traffic to itself. Denial-of-service

BGP / 163

164 / BGP

attacks occur when a bad actor sends
undesirable BGP traffic to a victim, exhausting
the victim's resources (knocking them offline).

To combat these various security concerns,
some techniques have been introduced via
RFCs to make BGP less of an attack vector.
The biggest contribution so far is something
called Route Origin Validation (ROV) which
uses public key infrastructure to make sure
routes are signed by the Autonomous System
that is originating them.

Further, this same technology is used by the
BGPSec standard to have each router in a
given path use signatures to verify the
authenticity of a given hop to create a fully
trusted chain from origin to destination.

These standards are currently optional, and as
of October 2019, only 84 Autonomous
Systems out of a pool of over 92,000 currently
use Route Origin Validation. Until more
networks adopt ROV and/or more security
practices are introduced, we will continue to
see incidents of traffic being hijacked or spied
upon, often without users even knowing that it
is happening.

EXPERIMENTING WITH BGP

As we have shown, it is normally quite
cost-prohibitive to get on the Internet yourself
and operate a BGP router. However, there are
still ways you can get on the Internet with
BGP, or generally experiment in a safe setting.

If you happen to be a licensed amateur radio
operator, you can get a /24 allocation (256
addresses) of IPv4 from AMPRNet, an
experimental network for ham radio operators.
These are real, routable IP addresses and you
can configure them for use via several
methods from AMPRNet themselves or you
can ask a hosting provider to announce these
addresses for you so they are available on a
virtual private server under your control. More
information is available at
https://www.ampr.org

If real-world BGP routing seems a little
daunting, you can join the amateur DN42
network. DN42 is a BGP test network where
everyone is given IP addresses and AS
numbers out of private ranges. Users are
encouraged to establish BGP sessions with
one another to learn how BGP works.
More information is available at
https://dn42.eu

Alternatively, I have been involved with
developing a BGP test network framework

called router.city. Like DN42, this network uses
addresses and ASNs out of private ranges, but
is something easy to clone and set up (with
example configuration documents) between a
small group of people who want to play with
BGP in a setting where they can create
disruptions and do more experimental work.
More information is available at
https://router.city

CONCLUSION

Though the Internet can be a difficult entity to
see and understand, it is really a fairly basic
network connecting smaller networks through
a common language.

While Internet routing knowledge is usually
reserved for a select group of network
engineers, it is important that information
about how it is set up and operated is known
to more people.

How to connect to the Internet shouldn't be a
secret held by large organizations, and
hopefully this inspires you to get more
involved with getting online!

BGP / 165

OPEN SOURCE

DIRECTORY

OPEN SOURCE DIRECTORY / 167

Airlock IPFS/Ethereum based file storage/sharing

P2P / DATA

https://github.com/slothbag/Airlock

BitDust Decentralized online storage network https://bitdust.io

ClearSkies Dropbox-like file sync program https://github.com/jewel/clearskies

Dat Project File storage/syncing protocol https://datproject.org

GUN Decentralized graph protocol to sync the web https://gun.eco

Hola P2P virtual private network https://hola.org

IPFS P2P data distribution and storage https://ipfs.io

Lethean dVPN with bandwidth marketplace https://lethean.io

Lokinet Monero based decentralized VPN https://loki.network

Mysterium dVPN built on Ethereum https://mysterium.network

Nym Anonymous distributed VPN https://nymtech.net

OnionShare TOR based tool for anonymous file sharing https://onionshare.org

Radicle P2P stack for code collaboration http://radicle.xyz

Scuttlebot Peer-to-peer log store http://scuttlebot.io

Sentinel dVPN with "Proof of Traffic" systemt https://sentinel.co

Storj Decentralized cloud storage https://storj.io

Syncthing

Continued ĺ

Torrent/Dropbox type file storage/distribution https://syncthing.net

Orchid Ethereum-based VPN https://orchid.com

P2PVPS Decentralized VPS network https://p2pvps.org

Privatix Another Ethereum dVPN project https://privatix.io

168 / OPEN SOURCE DIRECTORY

Bittube IPFS based video platform

P2P / ENTERTAINMENT

https://bit.tube

Decentraland Decentralized virtual reality world https://decentraland.org

D.Tube Steemit/IPFS base video platform https://d.tube

Funk Whale P2P music/audio network https://funkwhale.audio

LBRY Community run digital marketplace https://lbry.io

Livepeer Ethereum based video platform https://livepeer.org

Adamant Blockchain-based anonymous messenger

P2P / COMMUNICATIONS

https://adamant.im

Aether Decentralized pulic communities https://getaether.net

Afari Blockstack based social network https://afari.io

Akasha IPFS/Ethereum based social network https://akasha.world

BitMessage Encrypted P2P messaging app https://bitmessage.org

Briar Encrypted messaging and forums https://briarproject.org

Cabal Experimental P2P group chat app https://cabal.chat

Iris P2P social/chat platform https://github.com/irislib/iris

Matrix An open network for secure P2P communications https://matrix.org

Peerlinks Distributed secure IRC https://peerlinks.io

RetroShare Cross-platform, secure, P2P communications http://retroshare.us

Ricochet Encrypted instant messaging routed through TOR https://ricochet.im

OPEN SOURCE DIRECTORY / 169

Secure Scuttlebutt Decentralized secure gossip platform

P2P / COMMUNICATIONS

https://scuttlebutt.nz

Sigle Create decentralized blogs https://sigle.io

Tinfoil Chat Onion-routed messaging system https://github.com/maqp/tfc

Tox P2P audio, video and text communications https://tox.chat

Unwalled Garden Dat-based social network github.com/beakerbrowser/unwalled.garden

Whatsat Encrypted, onion-routed P2P chat https://github.com/joostjager/whatsat

Beaker Browser Browser for Dat based decentralized web

P2P / NEW INTERNET

https://beakerbrowser.com

Blockstack Platform for building decentralized apps https://blockstack.org

Enigma Privacy layer for the decentralized web https://enigma.co

Ethereum P2P network for smart contracts https://ethereum.org

Handshake Decentralized naming protocol https://handshake.org

Maidsafe Creating a new alternative internet https://maidsafe.net

NameCoin Blockchain based naming system https://namecoin.org

Open Index Protocol Indexing the worlds data https://openindexprotocol.com

Solid Project Project to create a new decentralized web https://solid.mit.edu

SkyWire Decentralized platform to build a new internet https://skycoin.net/skywire

Swarm Serverless hosting, and P2P data distribution https://swarm.ethereum.org

YaCy Decentralized, user-run search engine http://yacy.net/en

170 / OPEN SOURCE DIRECTORY

Zeronet Open, free and uncensorable websites

P2P / NEW INTERNET

https://zeronet.io

Bisq Decentralized cryptocurrency exchange

P2P / MONEY & COMMERCE

https://bisq.network

Bitcoin A peer-to-peer electronic cash system https://bitcoin.org

Lightning Scaling network for Bitcoin transactions https://lightning.network

Litecoin Peer-to-peer internet currency https://litecoin.org

Monero Privacy-focused P2P digital currency https://getmonero.org

Open Bazaar A decentralized ecommerce platform https://openbazaar.org

Origin Marketplaces on the blockchain https://originprotocol.com

Althea Mesh Incentivized mesh networking

P2P / NETWORKING

https://althea.org

Cjdns E2E encrypted IPv6 mesh networking https://github.com/cjdelisle/cjdns

DN42 Decentralized private networking https://dn42.net

Hyperboria P2P, encrypted private networking https://hyperboria.net

LibreRouter Project to design multi-radio routers https://librerouter.org

Locha Mesh Chat / send Bitcoin without internet https://locha.io

OPEN SOURCE DIRECTORY / 171

Open Garden Decentralized wifi sharing platform

P2P / NETWORKING

https://opengarden.com

RightMesh Ad-hoc mobile mesh networking platform https://rightmesh.io

Yggdrasil E2E encrypted IPv6 mesh networking https://yggdrasil-network.github.io

DIY Particle Detector Cheap, buildable detector by CERN

HEALTH & SCIENCE

github.com/ozel/DIY_particle_detector

F.Lab Open source bioscience machines https://f-labth.blogspot.com

Four Thieves Vinegar DIY epinephrine autoinjector + more https://fourthievesvinegar.org

Glia Low-cost open source medical devices https://glia.org

MobileCG Open source clinical grade ECG https://github.com/peterisza/mobilecg

OpenAPS Automated pancreas system https://openaps.org

OpenBioMedical 3D printable biomedical devices. http://openbiomedical.org

OpenFlexure High precision RPi microscope https://openflexure.org

OpenPCR DNA molecule copying machine https://openpcr.org

Open Detector Pocket-sized ion chamber https://hackaday.io/project/27508

Open RAMAN Low Cost Raman Spectrometer http://open-raman.org

Open Source Imaging A range of projects inc MRI machines https://opensourceimaging.org

PocketPCR Mini, buildable thermocycler http://gaudi.ch/PocketPCR

Tympan Hearing aid development platform https://tympan.org

Un0rick Open source ultrasound project http://un0rick.cc

172 / OPEN SOURCE DIRECTORY

AUGMENTATIONS

Alice Child focused robotic exoskeleton https://indi.global/alice

Fable Electronic prosthetic hand github.com/openbiomedical/OBM-FABLE

InMoov Hand Robotic hand build guide http://inmoov.fr/hand-and-forarm

Enabling the Future 3D printed prosthetics http://enablingthefuture.org

OpenBCI Open source brain computer interface https://openbci.com

Open Source Leg Fully articulating robotic leg https://opensourceleg.com

StarCat Open source bio signals https://starcat.io

Neuroon Open sleep/neuro tracker https://github.com/inteliclinic

SPACE

Blockstream Satellite Satellite network based bitcoin transactions https://blockstream.com/satellite

CubeSat Open standard for DIY satellites https://cubesat.org

Horn Antennas Two horn antenna guides https://opensourceradiotelescopes.org

Loop Antenna Small loop antenna guide https://opensourceradiotelescopes.org

SatNOGS Global network of satellite ground-stations https://satnogs.org

Space Decentral Building a decentralized space program https://spacedecentral.net

Tiny Radio Telescope DIY radio telescope https://hackaday.io/project/161556

Ultrascope Automated robotics observatory http://openspaceagency.com

UPSat QB50 cubesat by the Libre Space Foundation https://upsat.gr

OPEN SOURCE DIRECTORY / 173

Wikihouse Open source house building designs

HOUSING

https://wikihouse.cc

Open Building Open source furniture plans and more https://openbuildinginstitute.org

No Throw Design Downloadable furniture plans and instructions https://nothrowdesign.com/you-make/

Open Source Ecology Plans for building an entire village https://opensourceecology.org/gvcs

Divine on the Road Plans for building your dream van https://divineontheroad.com/build-a-van

The Vanual DIY Campervan Conversion https://thevanual.com

Obrary Furniture designs requiring CNC mill/laser https://obrary.com

DAPNet Decentralized Amateur Paging Network

COMMUNICATIONS

https://hampager.de

Disaster Radio Solar powered, disaster-resistant network https://disaster.radio

HackRF Low cost open source SDR platform https://github.com/mossmann/hackrf

LibreCMC Embedded OS, supporting a range of routers https://librecmc.org

LimeSDR Open source software defined radio board https://github.com/myriadrf

Low-Tech Magazine How to build a solar powered website https://solar.lowtechmagazine.com

OpenVPN VPN software for secure data communications https://openvpn.net

OpenWRT Open Source wireless router firmware https://openwrt.org

Project Byzantium Linux-based emergency mesh networking http://project-byzantium.org

Subnodes Turning Raspberry Pi's into access points http://subnodes.org

174 / OPEN SOURCE DIRECTORY

COMPUTING

DLT one Modular, open hardware Linux tablet https://hackaday.io/project/164845

Libreboot Freedom-respecting boot firmware https://libreboot.org

MNT Reform Open source, modular laptop computer https://source.mntmn.com/MNT

OpenBook Open hardware e-reader https://hackaday.io/project/168761

Ploopy An open-source trackball https://ploopy.co

DRONES

ArduPilot Open source autopilot system http://ardupilot.org

Dronecode Open source platform for UAVs https://dronecode.org

Flone Complete plans for building a drone http://flone.cc/comprar-flone

Paparazzi UAV Open source drone autopilot systems http://paparazziuav.org

VIRTUAL & AUGMENTED REALITY

AtmosVR Open source XR headset https://hackaday.io/project/166006

HardlightVR Open source haptic feedback suit https://github.com/HardlightVR

HoloKit Low cost mixed reality platform https://holokit.io

OSVR The original open source VR headset http://osvr.org

OPEN SOURCE DIRECTORY / 175

Project North Star Leap Motion's AR headset

VIRTUAL & AUGMENTED REALITY

github.com/leapmotion/ProjectNorthStar

Pupil Modular eyetracking platform https://pupil-labs.com/pupil

Relativity Headset VR Headset that costs ~$100 https://relativty.net

FarmBot Automated agriculture platform

AGRICULTURE

https://farm.bot

Food Computer Desktop food growing system http://openag.media.mit.edu/hardware

Farm Hack Various farming tool projects http://farmhack.org/tools

OSBeehives Open source beehive monitoring https://www.osbeehives.com

OSSI Open source solar inverter project

ELECTRICITY

https://github.com/transistorgrab/OSSI

Green Optimistic Various generator design guides greenoptimistic.com/category/green-tech-2/how-to

Wind Generator 55 watt 3D printed generator design https://hackaday.io/project/87345

Portal Point Generator Compact 100+ watt generator https://hackaday.io/project/159568

Continued ĺ

176 / OPEN SOURCE DIRECTORY

 MANUFACTURING / LASER CUTTING

LS-Laser Full guide for creating a CO2 laser cutter openbuilds.com/builds/ls-laser.7304

Lasersaur Build guide for Lasersaur cutter https://github.com/nortd/lasersaur/wiki

Laser V Smaller footprint laser engraver openbuilds.com/builds/much4-laserv-printed-version.937

LaseDuo Large, heavy duty laser cutter http://laserduo.com

MANUFACTURING / 3D SCANNING

MakerScanner Open source 3D laser scanner http://makerscanner.com

Ciclop Printable 3D scanner project https://github.com/bqlabs/ciclop

FabScan Raspberry Pi based laser scanner http://fabscan.org

FreeLSS 3D printable / RPi-based scanner http://freelss.org

MANUFACTURING / 3D PRINTING

Creality Ender-3 Hardware and software plans for Ender-3 printer github.com/Creality3DPrinting/Ender-3

Creality CR-10 Hardware and software plans for CR-10 printer github.com/Creality3DPrinting/CR-10

Falla 3D Open source 3D printer that uses maglev system https://github.com/3dita/Falla3D

Indie i2 Small footprint 3D printer openbuilds.com/builds/indie-i2.1976

Infinite 3D Printer Design for an automatic, conveyor 3D printer https://hackaday.io/project/114738

OPEN SOURCE DIRECTORY / 177

MANUFACTURING / 3D PRINTING

C-Bot Core XY style 3D printer with large print bed https://openbuilds.com/builds/c-bot.1146

3Drag 3D printer which uses the RepRap philosophy https://reprap.org/wiki/3drag

AE1 CNC Small footprint engraver/CNC

MANUFACTURING / CNC MILLING

github.com/Chris-Annin/AE1-CNC-engraver-router

C-beam Sphinx Large aluminium based CNC router openbuilds.com/builds/c-beam-sphinx.3605

Maslow CNC Community driven large format CNC https://maslowcnc.com

OpenBuilds MiniMill Small footprint desktop CNC openbuilds.com/builds/openbuilds-minimill.5087

OpenBuilds OX CNC Extremely detailed CNC build guide openbuilds.com/builds/openbuilds-ox-cnc-machine.341

Shapeoko The original open source desktop CNC https://wiki.shapeoko.com

X-Carve Popular modular CNC designs x-carve-instructions.inventables.com

Vacuum Former Open source vacuum former build guide

MANUFACTURING / VACUUM FORMING

https://labs.tcbl.eu/projects/32

178 / MANIFESTING REALITY

Thank you for taking the time to read through

NODE Vol 02. I hope it gives you optimism

about the future, and what I particularly want

to ram home is the idea that it matters that

you play an active role in not only consuming

technology, but creating, and proliferating it.

Many people will try to convince you that

politics, activism, placard waving, and the like

are the only ways to 'change' things, but

they're wrong. Technology is both the change

agent, and the enabler of new ideas—this is

how it’s always been.

If you think about it, pretty much every single

seismic change in human history came down

to technology. From figuring out and sharing

how to make pointy sticks for hunting, to

creating paper, writing implements,

metallurgy, printing presses, farming

techniques, medicine, telephones, radios,

trains, planes, computers, the Internet,

spaceships, and everything in between.

MANIFESTING
REALITY

Like I mentioned in last issue’s "Satoshi

Mindset" closing article, our civilization's

heavy reliance on electronics means now

more than any other time in history, each one

of us has a chance to improve things on a

small, or massive scale.

I know it's easy to make excuses. You don't

have enough time, knowledge, money,

connections, or whatever. I've told myself all

those, many times, and you know what I

found out? It's bullshit. The truth is, the best

time to start is always NOW, using whatever

you have at your disposal, even if that's

nothing more than your own imagination.

Maybe you've seen a project you would like

help out, or perhaps you've got your own ideas

on how to solve a problem using technology.

Either way, we're eager for you to succeed and

share your findings with the world.

Use the hashtag #nodevol02 somewhere on

your project pages or social media. This will be

our way to find each other across the web.

Keep building. The world needs you more than

you know. Much love, NODE.

180 / CREDITS

NODE VOL 02

Mike Dank, Editor and Writer (editor@N-O-D-E.net). Articles: p004, p030, p054, p086, p098, p106, p118, p158
NODE, Art Director and Writer (mail@N-O-D-E.net). Articles: p012, p018, p022, p028, p034, p038, p044, p048, p060, p078, p084,
p092, p096, p098, p112, p124, p132, p134, p140, p148, p154, p166, p178

IMAGE CREDITS

p006 by USGS (Public Domain), p007 by Bell Telephone Magazine (1922), p010 by CIA (Public Domain), p019 p020 by Joey Castillo
(CC-BY-SA 4.0), p024 p026 by Martti Malmi (CC-BY-SA 4.0), p039 p040 p041 p042 p043 by Apertus.org (CC-BY 4.0), p049 p050
p051 p052 p053 by Lukas F. Hartmann (CC-BY-SA), p055 p058 by Andre Staltz (CC-BY 4.0), p061 p062 p063 by Glia Project
(CC-BY-SA 4.0), p064 p065 by Frankie Flood (CC-BY-SA 4.0), p066 p067 by Indi.Global (CC-BY-SA 4.0), p068 p069 by Joseph
Xu/Michigan Engineering, Communications & Marketing (CC-BY-SA 4.0), p070 left by Joel Collins / Open Flexure (CC-BY 4.0), p070
right by Dan Berard (CC-BY-SA 4.0), p071 left by Open Source Imaging (CC-BY-SA 4.0), p071 right by OpenPCR (CC-BY-SA 4.0), p072
p0073 by Precious Plastic (CC-BY-SA 4.0), p074 p075 p076 by Tympan (CC-BY-SA 4.0), p099 p101 p104 by Niamfrifruli (CC-BY-SA
4.0), p103 by July an88 (CC-BY-SA 4.0), p107 by BJ-AKI (Pixabay License), p111 by dokumol (Pixabay License), p149 p150 by The
AKASHA Foundation (CC-BY-SA 4.0).

All other photos, illustrations and writing is by N-O-D-E.net, licensed under CC-BY-SA 4.0

THANK YOU

Nicolas Pace, Mihai Alisie, Joshua Long, Martti Malmi, Lukas F. Hartmann, Andre Staltz, Frankie Flood, Tarek Loubani, Tamas Kocsis,
Joey Castillo, Lukas Winter, Addie Wagenknecht, Joel Murphy, Elias Jaffa, Dan Berard, Joel Collins, Dan Newman, Elliot Rouse, Josh
Perfetto, Richard Bowman, Fernanda Zapata-Murrieta, Burak Nehbit, Sam Patterson, Jeremy Kaufman, Sebastian Pichelhofer,
RexOr, Esteban Ordano, Matthew Hodgson, Paul Frazee, Shawn Wilkinson, Manuel Moritz, & Baptiste.

